1. Фотометричні величини і їх одиниці
Фотометрія – це розділ фізичної оптики, в якому розглядаються енергетичні фотометричні характеристики оптичного випромінювання в процесах його випущення, поширення і взаємодії з речовиною. Історично склалося так, що оцінка фотометричних величин передусім відносилася до видимого випромінювання і здійснювалася в світлових одиницях. Використання фотометричних величин для усього оптичного діапазону електромагнітних коливань визначило їх оцінку в енергетичних одиницях. Кожній енергетичній величині в межах видимого діапазону відповідає світлова величина, отримана оцінкою випромінювання стандартним фотометричним спостерігачем. Обидва вигляди кожної величини мають одне і те ж буквене позначення з доданням відповідно індексів (енергетична) і (візуальна). Індекс звичайно опускають.
Розглянемо спочатку енергетичні величини і їх одиниці.
Основною енергетичною характеристикою випромінювання є потік випромінювання - відношення енергії, переносимої випромінюванням, до часу перенесення , що перевищує період коливання, що оцінюється у ватах (Вт):
,
де - енергія випромінювання в джоулях (Дж).
Спектр випромінювання являє собою розподіл потужності випромінювання по довжинах хвиль (або частотам). Випромінювання розжарених пар або газів, а також лазерів є лінійчатим, що умовно характеризується довжиною хвилі. Більшість же джерел випромінювання випускає безперервну сукупність монохроматичних випромінювань, тобто є джерелом суцільного спектра.
Рисунок 1 – Спектр випромінювання
Відношення середнього значення потоку випромінювання в малому спектральному інтервалі до ширини цього інтервалу називається спектральною щільністю потоку випромінювання (рис. 1).
. (1)
Інтегральний потік випромінювання в інтервалі довжин хвиль від до (див. рис. 1)
. (2)
Розглянемо інші енергетичні величини.
Енергетична світність є відношенням потоку випромінювання , вихідного від малої дільниці поверхні, що розглядається, до площі цієї дільниці ;
. (3)
Енергетичною освітністю називається відношення потоку випромінювання , падаючого на малу дільницю поверхні, що розглядається, до площі цієї дільниці:
. (4)
Порівнюючи формули (3), (4), отримуємо залежність між енергетичною освітністю і енергетичною світністю майданчика у такому вигляді:
, (5)
де - коефіцієнт відображення майданчика , що дорівнює відношенню потоку випромінювання , відображеного від поверхні майданчика, до потоку випромінювання , падаючого на цю поверхню: .
Енергетична сила світла визначає просторову щільність потоку випромінювання джерела і дорівнює відношенню потоку випромінювання , що розповсюджується від джерела в напрямі, що розглядається всередовищані малого тілесного кута, до цього тілесного кута :
. (6)
Тілесний кут - частина простору, обмежена конічною поверхнею. Якщо з вершини цієї поверхні як з центра описати сферу, то площа дільниці сфери, що вирізається конічною поверхнею, пропорційна квадрату радіуса сфери:
.
Рисунок 2 – Випромінювання
Одиницею тілесного кута є стерадіан (ср). При кут .
Енергетична яскравість рівна відношенню енергетичної сили світла в даному напрямі до площі проекції дільниці випромінюючої поверхні на площину, що перпендикулярну цьому напряму (рис. 2):
, (7)
де - кут між нормаллю до майданчика і даним напрямом.
Якщо розподіл енергетичної сили світла джерела в напрямі, що складає кут з нормаллю до поверхні, визначається залежністю (для розжарених тіл, світлорозсіюючих поверхонь)
,
де - енергетична сила світла в напрямі нормалі до поверхні (див. рис. 2), то енергетична яскравість такого джерела постійна у всіх напрямах: .
Джерела випромінювання, яскравість яких постійна у всіх напрямах, називають рівнояркими випромінювачами.
Енергетична експозиція рівна твору енергетичної освітленості на тривалість опромінення
(33)
Якщо світність міняється у часі, то
.
При розрахунках оптичних систем, діючих з селективними приймачами випромінювання, необхідно знати розподіл енергетичної характеристики по довжинах хвиль.
Спектральною щільністю будь-якої енергетичної величини так само, як і потоку випромінювання, є відношення середнього значення цієї величини в малому спектральному інтервалі, що розглядається до ширини цього інтервалу . Наприклад, спектральна щільність енергетичної світності
.
Для видимої частини спектра, що оцінюється по її дії на око, основною величиною є сила світла , що характеризує просторову щільність світлового потоку в даному напрямі. За одиницю сили світла прийнята кандела (кд) – сила світла, що випромінюється в перпендикулярному напрямі до поверхні чорного тіла площею при температурі, рівній температурі ствердження платини (), і тиску 101325 Па.
Світловим потоком , що визначає потужність видимої частини оптичного випромінювання, називають величину, рівну твору сили світла випромінювача на тілесний кут , всередовищані якого розповсюджується потік: .
Світловий потік вимірюють в люменах.
Світловий потік, що випускається точковим джерелом в сферу: .
Світність , освітленість , яскравість і світлову експозицію розраховують за формулами, аналогічними (3), (4), (7) і (8).
Основні енергетичні і фотометричні величини вказані в табл. 1. Нижче наведені значення яскравості деяких джерел випромінювання і освітленості, що отримується на поверхнях деяких об'єктів:
Яскравість деяких джерел випромінювання
Джерело, відповідне порогу чутливості ока
Нічне безмісячне небо
Світлодіод яскраво-червоний 102Д
Поверхня Місяця
Люмінесцентні лампи
Денне небо, покрите хмарами
Джерело з яскравістю, що сліпить око
Електрична лампа розжарювання для кіноапаратури КЗО-400
Лампа дугова ксенонова ДКШ 1000–3
Ртутна лампа надвисокого тиску ДРШ 100–2
Сонце
Лазер
Освітленість, що отримується на поверхнях деяких об'єктівОб'єкти, що освічуються
Зіниця ока, поріг освітленості
Поверхня Землі:
від зоряного неба
від Місяця
вдень від темних хмар
день від світлих хмар
вдень від Сонця
За межами атмосфери від Сонця
Місце роботи високої точності
Таблиця 1 – Енергетичні і фотометричні величини
Найменування | Формула | Одиниця | Найменування | Формула | Одиниця |
Потік випромінювання | Світловий потік | ||||
Енергетична сила світла | Сила світла | ||||
Енергетична світність | Світність | ||||
Енергетична світність | Освітленість | ||||
Енергетична яскравість | Яскравість | ||||
Енергетична експозиція | Світлова експозиція |
Зв'язок між світловим потоком і потоком випромінювання встановлюють через спектральну світлову ефективність , рівну відношенню монохроматичного світлового потоку до відповідного монохроматичного потоку випромінювання :
. (9)
Якісний зв'язок виявляється в тому, що однакові за значенням монохроматичні потоки випромінювання різних довжин хвиль спричиняють різне зорове відчуття ока і сприймаються як різні кольори. Око має максимальну спектральну світлову ефективність , рівну , до випромінювання з довжиною хвилі .
Відносною спектральною світловою ефективністю називають відношення спектральної світлової ефективності випромінювання з довжиною хвилі до максимальної спектральної світлової ефективності .
(10)
При малій яскравості предметів (присмерковий зір), що спостерігаються максимум відносної спектральної світлової ефективності зміщається у бік коротких довжин хвиль (ефект Пуркиньє). У таблиці 2 наведені значення для денного зору.
Таблиця 2 – Відносна спектральна світлова ефективність денного зору , мкм | , мкм | ||
0,38 0,42 0,46 0,50 0,54 0,55 0,56 | 0,000 0,004 0,060 0,323 0,954 0,995 0,995 | 0,58 0,60 0,62 0,66 0,70 0,74 0,78 | 0,870 0,631 0,381 0,061 0,004 0,0003 0,00002 |
Світловий потік Ф з урахуванням формул (1), (9), (10) буде
.
Світлова ефективність випромінювання рівна відношенню світлового потоку випромінювання даного спектрального складу до всього потоку випромінювання :
(11)
Світлову ефективність випромінювання зручно визначати за формулою (11) графоаналітичним способом. Одиницею світлової ефективності випромінювання є люмен на ват ().
... волн была близка к чувствительности человеческого глаза. Но лишь в 1930-х годах, после усовершенствования вакуумных фотоэлементов и изобретения селенового фотодиода, физическая (электрическая) фотометрия стала широко применяемым методом, особенно в промышленных лабораториях. 1. Теория фотометрического метода Метод анализа, основанный на переведении определяемого компонента в поглощающее свет ...
... -31, ДФС-41) а также импортные квантометры (английские Е-6000, Е-1000, американские ARL - 29500, ARL - 31000 и др.). Эмиссионная фотометрия пламени (пламенная фотометрия) Пламенная фотометрия является одним из вариантов эмиссионного спектрального анализа и основана на измерении интенсивности света, излучаемого возбужденными частицами (атомами или молекулами) при введении вещества в пламя ...
... каждой пластинке можно провести только три-четыре экспозиции, необходимо к подкассетнику фотометра подобрать 4—5 кассет, которыми в случае необходимости перезаряжать фотометр в процессе его работы во время затмения. Во время полной фазы с таким фотометром можно получить 8—12 экспозиций (при одной или двух сменах кассет соответственно). Во время частного затмения можно производить экспонирование ...
ления тяжелых металлов в природных водах Экстракционно-фотометрический метод определения хрома[16] На протекание естественных процессов в воде большое влияние оказывает содержание в ней тяжелых металлов. Были проведены исследования, целью которых являлась количественная оценка загрязнения реки Кальмиус тяжелыми металлами. Результаты данного исследования показали, что одним из тяжелых металлов ...
0 комментариев