1. Лапласовый (механистический) детерминизм, в основе которого лежат универсальные законы классической физики.
2. Вероятностный детерминизм, опирающийся на статистические законы и законы квантовой физики.
В динамических теориях явления природы подчиняются однозначным (динамическим) закономерностям, а статистические теории основаны на объяснении процессов вероятностными (статистическими) закономерностями. К динамическим теориям относятся классическая механика (создана в XVII-XVIII вв.), механика сплошных сред, т. е. гидродинамика (XVIII в.), теория упругости (начало ХГХ в.), классическая термодинамика (XIX а), электродинамика (XIX в.), специальная и общая теория относительности (начало XX в). К статистическим теориям относятся статистическая механика (вторая половина XIX в.), микроскопическая электродинамика (начало XX в.), квантовая механика (первая треть XX в.). Таким образом, XIX столетие является столетием динамических теорий; XX столетие — столетием статистических теорий.
В современной концепции детерминизма органически сочетаются необходимость и случайность. Признание самостоятельности статистических, или вероятностных, законов, отображающих существование случайных событий в мире, дополняет прежнюю картину строго детерминистического мира. В результате в новой современной картине мира необходимость и случайность выступают как взаимосвязанные и дополняющие друг друга аспекты объяснения окружающего мира.
Современную концепцию детерминизма можно сформулировать следующим образом: динамические законы представляют собой первый, низший этап в процессе познания окружающего мира; статистические же законы более совершенно отображают объективные связи в природе: они являются следующим, более высоким этапом познания.
В качестве примера динамических законов можно назвать закон Ома, выражающий зависимость сопротивления от его состава, площади поперечного сечения и длины. Этот закон охватывает множество различных проводников и действует в каждом отдельном проводнике, входящем в это множество.
Статистический характер имеет, например, взаимосвязь изменений давления газа и его объема при постоянной температуре, выявленная Бойлем и Мариоттом. Статистическими являются законы квантовой механики, касающиеся движения микрочастиц; они не в состоянии определить движение каждой отдельной частицы, но определяют движение группы, того или иного множества.
В отличие от динамических законов, статистические законы не позволяют точно предсказать наступление или ненаступление того или иного конкретного явления, направление и характер изменения тех или иных его характеристик. На основе статистических закономерностей можно определить лишь степень вероятности возникновения или изменения соответствующего явления.
Однако деление фундаментальных теорий на динамические и статистические является условным. Фактически все фундаментальные теории должны рассматриваться как статистические. Например, классическую механику с полным основанием следует считать статистической теорией, так как лежащий в ее основе принцип наименьшего действия имеет вероятностную природу, потому что, согласно принципу минимума энергии, состояние с наименьшей энергией оказывается наиболее вероятным.
Физика рассматривает два основных типа причинно-следственных связей и соответственно два типа закономерностей—динамические и статистические. Изучение истории возникновения фундаментальных физических теорий позволяет сделать вывод, что динамические теории соответствовали первому этапу в процессе познания природы человеком, тогда как на следующем этапе главную роль стали играть статистические теории. Наиболее ярко сочетание этих концепций детерминизма в познании природных явлений проявилось при изучении термодинамических процессов и явлений. Рассмотрим основные концепции этих методов в применении к термодинамике.
2 Термодинамика и концепция необратимости
История открытия закона сохранения и превращения энергии привела к изучению тепловых явлений в двух направлениях: термодинамическом, изучающем тепловые процессы без учета молекулярного строения вещества, и молекулярно-кинетическом, исследующем тепловые явления как результат совместного действия огромной совокупности движущихся частиц, из которых состоит вещество. Термодинамика возникла из обобщения многочисленных фактов, описывающих явления передачи, распространения и превращения тепла. Молекулярно-кинетическое направление характеризуется рассмотрением различных макропроявлений систем как результат суммарного действия огромной совокупности хаотически движущихся молекул. При этом молекулярно-кинетическая теория использует статистический метод, интересуясь не движением отдельных молекул, а только средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название — статистическая физика. Оформившись к середине XX в., оба эти направления подходят к рассмотрению изучения состояния вещества с различных точек зрения и дополняют друг друга, образуя одно целое.
Работа Д. Джоуля, Ю. Майера и других установили так называемое первое начало термодинамики. Р. Клаузиус первым высказал мысль об эквивалентности работы и количества теплоты как о первом начале термодинамики. Всякое тело имеет внутреннюю энергию, которую Клаузиус назвал «теплом содержащимся в теле» (U) в отличие от «тепла, сообщенного телу» (Q). Величину U можно увеличить двумя эквивалентными способами — произведя над телом механическую работу (А) или сообщая ему количество теплоты (Q).
Общепризнанным является тот факт, что распространение тепла представляет собой необратимый процесс и тепло передается от горячего тела к холодному, а не наоборот. Важной концепцией термодинамики является то, что Клаузиус определил, что при работе тепловой машины не все количество теплоты, взятое у нагревателя, передается холодильнику. Часть этой теплоты превращается в работу, совершаемую машиной. Клаузиус показал, что объяснение превращения теплоты в работу основывается еще на одном принципе, сформулированном С. Карно, утверждающим, что в любом непрерывном процессе превращения теплоты от горячего нагревателя в работу непременно должна происходить отдача теплоты холодильнику. Совершаемая при этом тепловая работа (А) оценивается коэффициентом полезного действия (η) следующим образом: η = A/Q1, где Q — количество теплоты, переданное нагреванием. Максимальный коэффициент полезного действия имеет идеальная тепловая машина, работающая по циклу Карно, коэффициент полезного действия которой определяется как
η = (Т1 – Т2)/Т1,
где Т1 — абсолютная температура нагревателя; Т2 — абсолютная температура холодильника.
Таким образом, имеет место общее свойство теплоты, заключающееся в том, что теплота «всегда обнаруживает тенденцию к уравниванию температурной разницы путем перехода от теплых тел к холодным». Это положение Клаузиус предложил назвать «вторым основным положением механической теории теплоты», и в современную науку оно вошло как второе начало термодинамики.
Все эти многочисленные факты и нашли свое обобщение и теоретическое объяснение в законах классической термодинамики:
1. Если к системе подводить тепло Q и над ней производить работу А, то энергия системы возрастает до величины U: U = Q + А. Эту энергию U называют внутренней энергией системы.
2. Невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре, т. е. тепло не может перетечь самопроизвольно от холодного тела к горячему.
В первом законе речь идет о сохранении энергии, во-втором— о невозможности производства работы исключительно за счет изъятия тепла из одного резервуара при постоянной температуре, т. е. о направлении тепловых процессов в природе.
В 1865 г. немецкий физик Рудольф Клаузиус для формулировки второго закона термодинамики ввел новое понятие — «энтропия» (от греч. entropia — поворот, превращение). Клаузиус рассчитал, что существует некоторая величина S, которая подобно энергии, давлению, температуре характеризует состояние газа. Когда к газу подводится некоторое количество теплоты, AQ, то энтропия S возрастает на величину, равную AS = AQ/T.
В течение длительного времени ученые не делали различий между теплотой и температурой. Однако ряд явлений указывал на то, что эти понятия следует различать. Например, при плавлении кристаллического тела теплота расходуется, а температура тела не изменяется в процессе плавления. После введения Клаузиусом понятия энтропии стало понятно, где пролегает граница четкого различия таких понятий, как теплота и температура. Дело в том, что нельзя говорить о каком-то количестве теплоты, заключенном в теле. Это понятие не имеет смысла. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она не является сохраняющейся величиной. Поэтому теплота определяется в физике не как вид энергии, а как мера изменения энергии. В то же время введенная Клаузиусом энтропия, как и температура, оказалась величиной, сохраняющейся в обратимых процессах; это означает, что энтропия системы может рассматриваться как функция состояния системы, ибо изменение ее не зависит от вида процесса, а определяется только начальным и конечным состоянием системы.
Было также показано, что изменение энтропии в случае обратимых процессов не происходит, т. е. AS = 0. Значит, энтропия изолированной системы в случае обратимых процессов постоянна. При необратимых процессах получаем закон возрастания энтропии: ΔS > 0.
3 Проблема «тепловой смерти Вселенной»
Классическая термодинамика оказалась не способной решить космологические проблемы характера протекания процессов, происходящих во Вселенной. Уильям Томпсон экстраполировал принцип возрастания энтропии на крупномасштабные процессы, протекающие в природе. На основе этого Р. Клаузиус распространил этот принцип на Вселенную в целом, что привело его к гипотезе о «тепловой смерти Вселенной». Все физические процессы, согласно второму началу термодинамики, протекают в направлении передачи тепла от более горячих тел к менее горячим. Это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, будущее вырисовывается перед нами в достаточно трагических тонах, ожидается исчезновение температурных различий в природе и превращение всей мировой энергии в теплоту, равномерно распределенную во Вселенной. Отсюда Клаузиус выдвинул два постулата:
... наблюдаемых явлений" (И.Р.Пригожин, И.Стенгерс). Ту же неудовлетворенность выражали и другие физики. Так, Роджер Пенроуз в своей книге "Новый разум императора" заметил: "Непонимание нами фундаментальных законов физики не позволяет нам схватить суть разума в физических или логических терминах". Пенроуз также особо выделяет проблему времени. Он пишет: "По моему мнению, наша физическая картина ...
... в этом отчёта и, в частности, не был готов к последовавшим за публикацией многочисленным и, как мы убедимся далее, вполне справедливым упрёкам в возможности математической мистификации физических явлений. Он отступал от методологии Ньютона сознательно, о чём прямо пишет в своей автобиографии: “Простите меня, Ньютон. Созданные Вами концепции даже сегодня влияют на научные исследования в физике, но ...
х точных наук. Результат? Постепенное постижение истины. Как уже говорилось ранее в этой работе речь пойдет о динамических и статистических законах, на которых сегодня и держится современная картина мира. Такое деление законов еще раз подтверждает что непознаное, не точно исчисляемое и объясняемое постепенно становится явью с помощью новых концепций. Появление статистических методов в познании ...
... а расширяется само пространство. 4. ПРИРОДА ВРЕМЕНИ. Ознакомившись с вышесказанным, можно сказать что философы, а затем Эйнштейн не рассматривали физическую природу времени и гравитации, говоря о них как о свойствах материи и пространства. Рассматривая что будет наблюдать наблюдатель находясь в покое и двигаясь со скоростью света (теория относительности). Так что ...
0 комментариев