2.2. Взаимовлияние кинетики химических реакций и массообмена пористых углеродных частиц с газами.
Влияние относительной скорости движения частицы на кинетику химических реакций и тепломассообмен учитывается радиусом приведенной пленки , на поверхности которой задаются параметры невозмущенного потока [1, 2]. Для случая отсутствия вынужденной и естественной конвекций (частица неподвижна относительно газа, Nu=2) радиус приведенной пленки равен бесконечности. Радиус приведенной пленки уменьшается с увеличением интенсивности естественной и вынужденной конвекций, приближаясь к радиусу частицы . Зависимость от критерия Нуссельта имеет вид:
(8)
, (9)
, [5, 10]
, , , ,
,
,
где – критерии Рейнольдса, определяющие суммарную, вынужденную и естественную конвекции; Gr, Pr – критерии Грасгофа и Прандтля; V - относительная скорость частицы, м/с; g – кинематическая вязкость газа, м2/с; g – ускорение свободного падения, м/с2; аg – температуропроводность газовой смеси, м2/с; - коэффициент теплопроводности газовой смеси, Вт/(м К); - коэффициент теплопроводности газовой смеси при , Вт/(м К); - коэффициент массообмена, м/с; - удельная теплоемкость газовой смеси, Дж/(кг К); - температура газовой смеси на бесконечном удалении от поверхности частицы, К; - коэффициент диффузии кислорода в газовой смеси, м2/с; - коэффициент теплообмена, Вт/м2 К.
Зависимости относительных массовых концентраций кислорода (), диоксида углерода (), оксида углерода () и азота (), а так же скорость стефановского течения (), для , находятся из решений уравнений, в которых левые части представляют потоки масс газообразных компонент через произвольную поверхность радиуса r, а правые – скорости образования или исчезновения масс этих компонент в результате химических реакций
(10)
,
,
где – молярная масса угарного газа, кг/моль; - текущая скорость стефановского течения, м/с.
Предполагая, что коэффициенты диффузии компонент газовой смеси равны и, применяя условие, , из (10) получим уравнение неразрывности
, (11)
где Wc определяется формулой (6), - скорость стефановского течения на поверхности частицы, м/с.
Для решения (10) зададим граничные условия
и введем безразмерные координаты
, . (12)
Учитывая (8) и (9), получим, что безразмерная скорость стефановского течения на поверхности частицы
,
где - относительные массовые концентрации; j-1 для О2, 2 - СО2, 3 - СО, 4 - N2; ― относительные массовые концентрации компонент газовой смеси на поверхности частицы и приведенной пленки.
Решение (10) и (11) представим в видеили (13)
Скорость химического превращения углерода в газообразные компоненты может оказывать влияние на интенсивность теплообмена поверхности частицы с газом. Для определения плотности теплового потока, характеризующего теплообмен частицы с газом, воспользуемся предположением о квазистационарности поля температуры газовой фазы и частицы. В этом случае () тепловой поток через произвольную поверхность радиуса является постоянным и равен произведению плотности теплового потока на поверхность частицы.
.
С учетом уравнения неразрывности (11) представим в виде.
Задавая граничные условия , и безразмерные координаты в виде (12), решение представим в аналогичном (13) виде
, .
При выражение для получим в виде
.
Так как , то, представляя , из последнего выражения получим возможность выразить в виде суммы плотностей тепловых потоков за счет теплообмена и стефановского течения
или
.
Получено, что плотность теплового потока в основном определяется теплообменом, а стефановкое течение оказывает не значительное влияние, таким образом, плотностью теплового потока за счет стефановского течения можно пренебречь.
Подставив (13) в левые части уравнений (10) и, полагая получим систему уравнений, которая совместно с (11) позволяет найти и
,
,
(14)
,
.
Обозначив , из (14) выразим поверхностные концентрации компонент через
, (15)
, (16)
, (17)
. (18)
Подставляя (15) и (16) в первое и второе уравнения системы (10) при r=rs, получим трансцендентное уравнение для определения безразмерной скорости стефановского течения на поверхности частицы
(19)
Численные расчеты показывают, что <<1. С учетом линейного приближения и, полагая, что , из (19) получим, что безразмерная скорость стефановского течения и, следовательно, скорость химического превращения углеродной частицы имеют следующий вид:
, (20)
,
, (21)
, (22)
где - скорость стефановского течения при протекании химической реакции в кинетической области, - число Семенова, диффузионно-кинетическое соотношение.
Подставляя (20) в (15) при =1, получим связь с в явном виде
. (23)
В предположении, что , аналогичным образом из (16), (17), (18) находим поверхностные концентрации и
(24)
(25)
(26)
Используя формулы (23) и (24), проведем анализ влияния температуры на и, следовательно, на и .
При невысоких температурах и диаметрах частицы, для которых (, , ), то есть реализуется кинетическая область протекания химических реакций.
Учитывая, что при этих условиях (3) приймет вид , при этом .
Подставляя (23) и (24) в (6), получим, что для кинетической области
, (27)
, ,
,
,
. (28)
Т.е. при протекании реакции в кинетической области и определяются внутренним реагированием и увеличиваются с ростом температуры по аррениусовской зависимости и не зависят от относительной скорости движения частицы. При этом химической реакцией (III) можно пренебречь. Это подтверждается экспериментальными данными [5].
В области промежуточных температур и диаметров (, , ) повышение температуры приводит к подключению процессов массопереноса и эндотермической реакции (III), что сдвигает кинетику химических реакций в переходную область. Для этой области можно записать
,
.
В этой области температур, в результате действия эндотермической реакции (III), в определенном диапазоне размеров частицы, с ростом температуры происходит понижение .
Дальнейшее повышение температуры и диаметра частицы может привести к смещению кинетики химических реакций в диффузионную область, в которой выполняются условия
, .
Используя условие, из (22) получим
, (29)
При протекании реакций в диффузионной области, из (23)-(26) с учетом (21), получим выражения для поверхностных концентраций
, (30)
, (31)
, (32)
, (33)
где
, (34)
Подставляя (30) и (31) в (7) получим, что при протекании химических реакций в диффузионной области плотность химического тепловыделения
.
Учитывая, что тепловые эффекты реакций (I) – (III) связаны между собой
,
получим, что плотность химического тепловыделения в диффузионной области определяется тепловым эффектом реакции (II)
. (35)
Скорости химического превращения углеродной частицы и при протекании химических реакций в диффузионном режиме, получаются в результате подстановки (30), (31) в (1) и (2)
,
.
С учетом (29) и (34) получим, что суммарная скорость химического превращения углерода при высокой температуре определяется скоростью химической реакции 2С+О2=2СО (ІІ), протекающей в диффузионной области
. (36)
... ,Sб=pdL, из (2.14) определим временную зависимость толщины оксидной пленки на поверхности проводника: , . (2.15) Дифференциальные уравнения (2.13), (2.14) с учетом уравнений (2.9), (2.5)–(2.12) описывают нестационарный высокотемпературный тепломассообмен и кинетику окисления вольфрамового проводника, нагреваемого электрическим током в газообразной среде, ...
... или технологических процессов; – при выборе технического решения обеспечить малоотходность производства и максимальную эффективность использования энергоресурсов. Задачи специалиста в области безопасности жизнедеятельности сводятся к следующему; – контроль и поддержание допустимых условий (параметры микроклимата, освещение и др.) жизнедеятельности человека в техносфере; – идентификация ...
... тренировок, Шведы являются признанными мировыми экспертами в пожаротушении. Многие противопожарные службы мира сегодня используют Шведский метод подготовки. В последние 10 лет в Швеции появились огневые тренажеры для подготовки ствольщиков, работающие на газовом топливе (см. рисунок 4). Их недостатком является условный характер тренировки: оператор тренажера управляет интенсивностью подачи и ...
... готовность начинается с оповещения и сбора руководящего состава. 5.1 Оповещение и сбор руководящего состава при возникновении чрезвычайной ситуации на Туймазинском газоперерабатывающем заводе Место сбора и работы комиссии по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности Туймазинского газоперерабатывающего завода (КЧС ПБ) - здание бытового помещения, ...
0 комментариев