1.3.2 Метод узловых потенциалов (МУП)
Ток в любой ветви электрической цепи можно определить по известным потенциалам узлов, к которым она подключена, или напряжению между этими узлами.
Согласно второму закону Кирхгофа для любой ветви электрической цепи, схема которой приведена на рисунке, при заданных условных положительных направлениях ЭДС, тока и напряжения и указанном направлении обхода контура можно написать уравнение -Ukm + RkmIkm = Ekm, откуда
Ikm = (Ekm + Ukm)/Rkm = [Ekm + (φk – φm)]Gkm (1.8)
где Ukm = (φk - φm) — напряжение между узлами «k» и «m», а φk и φm — потенциалы этих узлов, причем φk > φm Gkm = 1/Rkm– проводимость ветви.
Метод расчета электрических цепей, в котором в качестве неизвестных принимают потенциалы узлов схемы, называют методом узловых потенциалов. Метод более эффективен по сравнению с методом контурных токов в случае, если число узлов в схеме меньше или равно числу независимых контуров, так как в любой электрической цепи потенциал одного из узлов можно принять равным нулю, а число узлов, потенциалы которых следует определить относительно этого узла, станет равным (q -1).
Система уравнений для неизвестных потенциалов любой электрической цепи, имеющей q узлов, может быть получена из системы уравнений, составленной по первому закону Кирхгофа для (q - 1) узлов, если в ней токи в ветвях выразить через потенциалы узлов в соответствии с (1.8). В общем случае эта система имеет вид
G11φ1 + G12φ2 + G13φ3 + … + G1nφn = Iy1,
G21φ1 + G22φ2 + G23φ3 + … + G2nφn = Iy2, (1.9)
Gn1φ1 + Gn2φ2 + Gn3φ3 + … + Gnnφn = Iyn
где n = (q - 1); φ1, ф2…φn — потенциалы 1, 2, … n узлов относительно узла q, потенциал которого принят равным нулю; Gkk — сумма проводимостей всех ветвей, подключенных к узлу k; Gkj = Gjk — сумма проводимостей ветвей между узлами «j» и «k», взятая со знаком «минус». Если же между узлами «j» и «k» нет ветвей, то принимают Gkj = Gjk = 0; Iyk — узловой ток, равный сумме токов всех ветвей, содержащих источники ЭДС и подключенных к узлу «k», причем каждый из них определяется по уравнению (1.8) при Ukm = 0. Токи, направленные к узлу, берут со знаком «плюс», а от узла — со знаком «минус».
После решения системы (1.9) относительно узловых потенциалов определяют напряжения между узлами Ukm и токи в ветвях в соответствии с (1.8). Токи в ветвях, не содержащих источников ЭДС, определяют аналогично, полагая в уравнении (1.8) Ekm = 0.
Например, для электрической цепи (см. рис. 1.3), если принять потенциал узла 3 равным нулю (φ3 = 0), система уравнений будет иметь вид
G11φ1 + G12φ2 = Iy1, (1.10)
G21φ1 + G22φ2 = Iy2,
где
Метод узловых потенциалов особенно эффективен при расчете электрических цепей с двумя узлами и большим количеством параллельных ветвей, при этом, если принять потенциал одного из узлов равным нулю, например, j 2 = 0, то напряжение между узлами будет равно потенциалу другого узла
(1.11)
где п — число параллельных ветвей цепи, а m — число ветвей, содержащих источники ЭДС.
Рис. 1.4
1.3.3 Метод эквивалентного генератора (МЭГ)
Метод позволяет в ряде случаев относительно просто определить ток в какой-либо одной ветви сложной электрической цепи и исследовать поведение этой ветви при изменении ее сопротивления. Сущность метода заключается в том, что по отношению к исследуемой ветви сложная цепь заменяется эквивалентным источником (эквивалентным генератором — ЭГ) с ЭДС Ег и внутренним сопротивлением Rг.
Например, по отношению к ветви с резистором R3 электрическую схему, приведенную на рис. 1.4, а, можно заменить эквивалентной (см. рис. 1.4, б).
Если известны ЭДС и сопротивление эквивалентного генератора, то ток ветви может быть найден как
I3 = Eг / (Rг + R3) (1.12)
и задача сводится к определению значений Ег и Rг.
Уравнение (1.12) справедливо при любых значениях сопротивления резистора R3. Так, при холостом ходе ЭГ, когда узлы 1 и 2 разомкнуты, I3 = 0 и Ег = U0, где U0 = (φ1 – φ2) — напряжение холостого хода эквивалентного генератора, φ1 и φ2 — потенциалы узлов 1 и 2 в этом режиме.
При коротком замыкании ветви (R3 = 0) ток в ней Iкз = Eг/Rг = U0/Rг,откуда внутреннее сопротивление ЭГ Rг = U0/Iкз. Таким образом, для определения параметров эквивалентного генератора необходимо рассчитать любым из известных методов потенциалы узлов φ1 и φ2 в режиме холостого хода ЭГ и ток короткого замыкания в исследуемой ветви.
Приведенный метод определения параметров эквивалентного генератора является наиболее универсальным, однако в ряде случаев сопротивление Rг, проще рассчитать как эквивалентное сопротивление между разомкнутыми узлами исследуемой ветви сложной цепи в предположении, что все источники ЭДС в цепи закорочены, как показано на рис. 1.4, в.
Литература
1. Иванов И. И., Лукин А. Ф., Соловьев Г. И.
И 20 Электротехника. Основные положения, примеры и задачи. 2-е изд., исправленное. — СПб.: Издательство «Лань», 2002.
2. Иванов И. И., Равдоник В.С.
Электротехника: Учебник для вузов. — М.: Высшая школа, 1984.
3. Электротехнический справочник. В 3-х т. Т. 1. Э45 Общие вопросы. Электротехнические материалы/ Под общ. ред. профессоров МЭИ В. Г.Герасимова, П. Г. Грудинского, Л. А. Жукова и др. — 6-е изд., испр. и доп. — М.: Энергия, 1980.
... неровностей на поверхности анода, т.е. происходит его полировка. 2 Расчётная часть 2.1Задание на курсовую работу Расчет разветвлённой электрической цепи постоянного тока. Для заданной электрической цепи необходимо: 1) Записать систему уравнений по законам Кирхгофа (без расчетов); 2) Определить все токи и ...
... будущего специалиста к работе на производстве. 1. Анализ электрического состояния линейных электрических цепей постоянного тока Схема электрической цепи постоянного тока: R2 I2 R7 I5 E1,r02 I7 R1 I3 R5 R3 R4 I4 I6 I1 E2,r02 R6 Рис.1.0 ...
... контура в той последовательности, в которой производим обход контура, прикладывая сопротивления друг к другу, по оси ординат - потенциалы точек с учетом их знака. рис.1.7 1.2 Расчет нелинейных электрических цепей постоянного тока Построить входную вольтамперную характеристику схемы (рис.1.8) Определить токи во всех ветвях схемы и напряжения на отдельных элементах, используя полученные ...
... заменяется несколькими относительно простыми цепями, в каждой из которых действует один источник энергии. Из принципа наложения следует метод наложения, применяемый для расчета электрических цепей. При этом метод наложения можно применять не только к токам, но и к напряжениям на отдельных участках электрической цепи, линейно связанных с токами. Принцип наложения нельзя применять для мощностей, ...
0 комментариев