7.4 Схема управления АД с тиристорным преобразователем

 

Тиристорный преобразователь с пассивными фильтрами (рис. 1) содержит три пары встречно-параллельно соединенных тиристоров, подключенных между питающей сетью и нагрузкой. Схема обладает структурной симметрией и осуществляет ступен-чатый переход от работы на пониженной частоте к частоте питающей сети, то есть к работе АД на естественной механической характеристике. Высокая надежность данного тиристорного преобразователя обусловлена схемотехнической простотой и естественной коммутацией вентилей.

В преобразователе используется квазичастотное управление (КЧУ), совмещающее особенности параметрического и частотного регулирования. Выходная частота преобразователя изменяется в соответствии с сигналами модуляции (прямоугольными, трапецеидальными, треугольными, синусоидальными и др.). Регулирование действующего значения выходного напряжения и тока производится за счет изменения угла включения тиристоров. Таким образом, осуществляется однополупериодное формирование напряжения статора пониженной частоты. В результате в выходном напряжении преобразователя наряду с основной (низкочастотной) гармонической составляющей присутствуют гармоники с частотой питающей сети. При работе тиристорного преобразователя на АД электромагнитный момент в режиме прерывистого тока имеет импульсный и, на отдельных интервалах, знакопеременный характер.

Для обеспечения непрерывности тока в обмотках статора АД в интервалах времени его отключения от питающей сети в тиристорном преобразователе используют энергию, накапливаемую в реактивных элементах фильтров, включенных на выходе тиристорного преобразователя. Продолжительность интервалов отключенного состояния при одноимпульсном формировании выходного напряжения и тока l0 і 0,5Тс, где Тс – период напряжения питающей сети, непрерывность протекания тока обеспечивается при периодическом переходном процессе с частотой свободных колебаний, равной или меньшей частоты сети w. Емкость конденсаторов фильтра:

С і 4LН/()

где Lн – индуктивность нагрузки;

Rн – сопротивление нагрузки.

При увеличении угла включения тиристоров a в целях ограничения действующего значения фазного тока продолжительность интервалов отключенного состояния возрастает, и для обеспечения непрерывности тока в паузе (а также соответствия направления его протекания полярности сигнала модуляции) емкость С следует увеличить.

Индуктивности L1, L2, L3 не участвуют в формировании тока в интервалах отключенного состояния, однако включение дросcелей в продольную ветвь фильтра необходимо для ограничения бросков зарядного тока конденсаторов. Значение индуктивности выбирается из условия ограничения тока до допустимого для тиристоров значения или из условия обеспечения электромагнитной совместимости преобразователя с сетью.

В результате определены следующие параметры элементов фильтра в преобра-зователе: С1…С3 = 100 мкФ, L1…L3= 45 мГн. Емкость С рассчитывается по формуле С і 4LН/(), выбранное значение соответствует минимально возможному при соблюдении условия непрерывности протекания тока в обмотках статора АД в интервалах откпюченного состояния.

Экспериментально полученные механические характеристики АД 4А71А4УЗ (Рном = 0,55 кВт) при его работе с данным преобразователем показаны на рис. 2 (выходная частота МНПЧ fвых = fс/7, где fс – частота питающей сети; действующее значение фазного тока равно номинальному при угле включения тиристоров a = 900 эл.). Максимальное значение электромагнитного момента, развиваемого АД, в схеме без фильтра составило около 0,45 Мнои, с фильтром – до 0,8Мном. Пусковой момент увеличился более чем вдвое.

Рис. 1. Схема тиристорного преобразователя с LC-фильтрами


Рис. 2. Экспериментальные механические характеристики АД типа 4А71А4УЗ в двигательном режиме при квазичастотном регулировании (m = М / Мном):

1 – без фильтра, 2 – с фильтром

 

Функциональные схемы управления АД.

Т-образная схема замещения АД

Функциональная схема электропривода с АД и регулятором напряжения

Схема тиристорного регулятора напряжения (а) и форма напряжения на статоре АД при различных значениях угла регулирования (б, в)


Функциональная схема замкнутой системы электропривода с АД и ТРН (а) и включение тиристоров для реверсивного управления (б)

Схема импульсного регулятора скорости АД на симмисторах в цепи ротора


Импульсное регулирование в цепи ротора АД:

а – электрическая схема; б – временные диаграммы работы регулятора; в-механические характеристики в замкнутой системе

 

Для управления асинхронным двигателем могут использоваться тиристоры в сочетании с релейно-контакторными аппаратами. Тиристоры применяются в качестве силовых элементов и включаются в статорную цепь, релейно-контакторные аппараты включаются в цепь управления.

Используя тиристоры в качестве силовых коммутаторов, можно на статор при пуске подавать напряжение от нуля до номинального значения, ограничивать токи и моменты двигателя, осуществлять эффективное торможение либо шаговый режим работы. Такая схема приведена на рис. 1.33.

Силовая часть схемы состоит из группы тиристоров VS1…VS4, включенных встречно-параллельно в фазы Аи С. Между фазами Аи В включен короткозамыкающий тиристор VS5. Схема состоит из силовой цепи (рис. 1.33, а), цепи управления (рис. 1.33, б) и блока управления тиристорами – БУ (рис. 1.33, в).

Для пуска двигателя включается автоматический выключатель QF, нажимается кнопка SB1 «Пуск», в результате чего включаются контакторы КМ1 и КМ2. На управляющие электроды тиристоров VS1…VS4 подаются импульсы, сдвинутые на 60е относительно питающего напряжения. К статору двигателя прикладывается пониженное напряжение, что приводит к снижению пускового тока и пускового момента.

 

Рис. 1.33. Тиристорное управление асинхронным двигателем с короткозамкнутым ротором

Размыкающий контакт КМ1 отключает реле KV1 с выдержкой времени, которая определяется резистором R7 и конденсатором С4. Размыкающими контактами реле KV1 шунтируются соответствующие резисторы в блоке управления, и на статор подается полное напряжение сети.

Для торможения нажимается кнопка SB2 «Стоп». Схема управления теряет питание, отключаются тиристоры VS1…VS4. Это приводит к тому, что на период торможения включается реле KV2 за счет энергии, запасенной конденсатором С5, и своими контактами включает тиристоры VS2. и VS5. Через фазы А и В статора проходит постоянный ток, который регулируется резисторами R1 и R3. Обеспечивается эффективное динамическое торможение.


Информация о работе «Электронный генератор тока»
Раздел: Физика
Количество знаков с пробелами: 37354
Количество таблиц: 0
Количество изображений: 21

Похожие работы

Скачать
19628
0
4

... нет. И чем мощнее установка, тем экономичнее преобразование, так как затраты на корону слабо зависят от вырабатываемой мощности. Для экспериментальной проверки каждым желающим работоспособности данного Тесла-генератора тока по части изготовления разумно посоветовать следующее. Изготовление простейшее, катушки Теслы делаются любителями прямо на кухне, что называется «на коленке», намотка ведется ...

Скачать
23310
0
20

... диод VD2, который закрывается после открывания транзистора, в результате чего прекращается связь между блокинг-генератором и схемой запуска. Иногда в цепь запуска включают дополнительный каскад развязки (эмиттерный повторитель). Двигатели постоянного тока: принцип действия, пуск, регулирование скорости вращения, искусственные характеристики. Различают статические и динамические режимы работы ...

Скачать
143686
5
84

... , Тайваня, США. Телефон-трубка собрана на семи транзисторах. Питание схемы снимается с диодного моста VD4 — VD7 через герконовый (или другого типа) переключатель SA1. На транзисторах VT1, VT2, VT3 собраны дифференциальная схема и электронный ключ для набора номера. Питание разговорной части схемы снимается с делителя R5, R8 и зависит от номинала резистора R8, (150 — 200 Ом). На транзисторе VT4 ...

Скачать
65267
0
0

... большой I (откр., или вкл. сост.). Принцип действия Т тесно связан с принципом действия бип. транз-ра, в кот. и электроны, и дырки участвуют в механизме проводимости. Название «тиристор» произошло от слова «тиратрон», поскольку электрические хар-ки обоих приборов во многом аналогичны. Благодаря наличию двух устойчивых состояний и низкой мощности рассеяния в этих состояниях Т обладают уникальными ...

0 комментариев


Наверх