Содержание

1. Что такое простой категорический силлогизм? Дайте его структуру

2. Для следующих терминов постройте диаграмму Эйлера: государства, республики, монархии

3. Постройте таблицу истинности следующей формулы

Список использованной литературы


1. Что такое простой категорический силлогизм? Дайте его структуру

Категорический силлогизм (или просто: силлогизм) – это дедуктивное умозаключение, в котором из двух категорических высказываний выводится новое категорическое высказывание.

Логическая теория такого рода умозаключений называется силлогистикой. Она была создана еще Аристотелем и долгое время служила образцом логической теории вообще.[1]

В силлогистике выражения "Все ... есть ...", "Некоторые ... есть ...", "Все ... не есть ..." и "Некоторые ... не есть..." рассматриваются как логические постоянные, т.е. берутся как единое целое. Это не высказывания, а определенные логические формы, из которых получаются высказывания путем подстановки вместо многоточий каких-то имен. Подставляемые имена называются терминами силлогизма.

Существенным является следующее традиционное ограничение: термины силлогизма не должны быть пустыми или отрицательными.

Примером силлогизма может быть:

Все жидкости упруги. Вода – жидкость. Вода упруга.

В каждом силлогизме должно быть три термина: меньший, больший и средний.

Меньшим термином называется субъект заключения (в примере таким термином является термин "вода").

Большим термином именуется предикат заключения ("упруга"). Термин, присутствующий в посылках, но отсутствующий в заключении, называется средним ("жидкость"). Меньший термин обозначается обычно буквой S, больший – буквой Р и средний – буквой М. Посылка, в которую входит больший термин, называется большей. Посылка с меньшим термином называется меньшей. Большая посылка записывается первой, меньшая – второй. Логическая форма приведенного силлогизма такова:

Все М есть Р. Все S есть М.

Все S есть Р.

В зависимости от положения среднего термина в посылках (является он субъектом или предикатом в большей и меньшей посылках) различаются четыре фигуры силлогизма. Схематически фигуры изображаются так:

По схеме первой фигуры построен силлогизм:

Все птицы (М) имеют крылья (Р). Все страусы (S) – птицы (М).

Все страусы имеют крылья.

По схеме второй фигуры построен силлогизм:

Все рыбы (Р) дышат жабрами (М). Киты (S) не дышат жабрами (М).

Все киты не рыбы.

По схеме третьей фигуры построен силлогизм:

Все бамбуки (М) цветут один раз в жизни (Р). Все бамбуки (М) – многолетние растения (S).

Некоторые многолетние растения цветут один раз в жизни.

По схеме четвертой фигуры построен силлогизм:

Все рыбы (Р) плавают (М). Все плавающие (М) живут в воде (S).

Некоторые живущие в воде – рыбы.

Посылками и заключениями силлогизмов могут быть категорические суждения четырех видов: SaP, SiP, SeP и SoP.

Модусами силлогизма называются разновидности фигур, отличающиеся характером посылок и заключения.

Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 × 64 = 256 модусов.

Силлогизмы, как и все дедуктивные умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма – систематизировать правильные силлогизмы, указать их отличительные черты.

Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые названия правильных модусов первых двух фигур:

1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront; 2-я фигура: Cesare, Camestres, Festino, Baroco, Cesaro, Camestros.

В каждом из этих названий содержатся три гласных буквы. Они указывают, какие именно категорические высказывания используются в модусе в качестве его посылок и заключения. Так, название Celarent означает, что в этом модусе первой фигуры большей посылкой является общеотрицательное высказывание (SeP), меньшей – общеутвердительное (SaP) и заключением – общеотрицательное высказывание (SeP).

Из 24 правильных модусов силлогизма 5 являются ослабленными: заключениями в них являются частноутвердительные или частноотрицательные высказывания, хотя в случае других модусов эти же посылки дают общеутвердительные или общеотрицательные заключения (ср. модусы Cesare и Cesaro второй фигуры). Если отбросить ослабленные модусы, остается 19 правильных модусов силлогизма.[2]

Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объемами имен.


Возьмем, для примера, силлогизм:

Все металлы (М) ковки (Р).
Железо (S) – металл (М).

Железо (S) ковко (Р).

Отношения между тремя терминами этого силлогизма (модус Barbara) представляются тремя концентрическими кругами. Эта схема интерпретируется так: если все М (металлы) входят в объем Р (ковких тел), то с необходимостью S (железо) войдет в объем Р (ковких тел), что и утверждается в заключении "Железо ковко".

Другой пример силлогизма:

Все рыбы (Р) не имеют перьев (М). У всех птиц (S) есть перья (М).

Ни одна птица (S) не является рыбой (Р).

Отношения между терминами данного силлогизма (модус Cesare) представлены на рисунке. Он истолковывается так: если все S (птицы) входят в объем М (имеющие перья), а М не имеет ничего общего с Р (рыбы), то у S (птицы) нет ничего общего с Р (рыбы), что и утверждается в заключении.

Пример неправильного силлогизма:

Все тигры (М) – млекопитающие (Р).
Все тигры (М) – хищники (S).

Все хищники (S) – млекопитающие (Р).

Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объем Р (млекопитающие) и все М входят также в объем S (хищники). Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объемами Р и S может быть двояким. Охватывая М, объем S может полностью входить в объем Р или объем S может лишь пересекаться с объемом Р. В первом случае можно было бы сделать общее заключение "Все хищники – млекопитающие", но во втором случае правомерно только частное заключение "Некоторые хищники – млекопитающие". Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержится. Значит, мы не вправе делать общее заключение. Силлогизм не является правильным.

В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развертывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.[3]

В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: "Щедрость заслуживает похвалы, как и всякая добродетель", "Он – ученый, поэтому любопытство ему не чуждо", "Керосин – жидкость, поэтому он передает давление во все стороны равномерно" и т.п. В первом случае опущена меньшая посылка "Щедрость – это добродетель", во втором – большая посылка "Всякому ученому не чуждо любопытство", в третьем – опять-таки большая посылка "Всякая жидкость передает давление во все стороны равномерно".

Для оценки правильности рассуждения в энтимеме следует восстановить ее в полный силлогизм.



Информация о работе «Понятие категорического силлогизма»
Раздел: Философия
Количество знаков с пробелами: 9663
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
18512
0
0

... видов суждений, число возможных комбинаций посылок в каждой фигуре равно 22, т.е. 16: АА АЕ IA OA AE (EE) IE (OE) AI EI (II) (OI) AO (EO) (IO) (OO) Очевидно, в 4-х фигурах число комбинаций равно 64. Разновидности силлогизма, различающиеся количеством и качеством посылок, называются модусами простого категорического силлогизма. Однако не все модусы согласуются с ...

Скачать
10824
0
0

... (P) предусматривает ответственность за поступки (M). Доброта (S) не требует ответственности (M) Доброта (S) несправедлива (P). Положение среднего термина определяет четыре типа построения (фигуры) простого категорического силлогизма, каждый из которых должен соответствовать своему формальному правилу вывода: Большая посылка должна быть более общей, меньшая утвердительной. Ее формула ( ...

Скачать
15679
1
3

... affirmo - утверждаю - для двух утвердительных высказываний и из слова nego - отрицаю - для отрицательных. Фигуры категорического силлогизма Расмотрим (на примере) строение силлогизма. Каждый человек (М) - смертен (Р) Сократ (S) - человек(М) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Сократ (S) - смертен (P) Силлогизм состоит из трех категорических ...

Скачать
13250
0
0

... -биологической классификации в отдельных случаях может быть «внедомашним животным» с точки зрения места обитания, то есть с социально-бытовой точки зрения. История возникновения понятия Учение о силлогизме впервые изложено у Аристотеля в его «Первой аналитике». Он говорит лишь о трёх фигурах категорического силлогизма, не упоминая о возможной четвёртой. Особенно подробно он рассматривает ...

0 комментариев


Наверх