2.4 Температура

Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхностных слоев звезды 3-4 тыс. К, то ее цвет красноватый, 6-7 тыс. К - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К имеют белый и голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым «показателем цвета», равным разности фотографической и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра.

У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, Н20 и др.). По мер увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца.

2.5 Эффективная температура

Обычно под температурой звезды понимают ее эффективную температуру.

Для определения последней необходимо знать полный поток излучения и радиус звезды. Достаточно точно обе эти величины, а потому и эффективные температуры могут быть измерены лишь для немногих звезд. Для остальных звезд эффективные температуры находят косвенными методами на основании изучения их спектров или показателей цвета с помощью шкалы эффективных звездных температур.

Шкалой эффективных температур называется зависимость цветовых характеристик излучения звезд, например спектрального класса или показателя цвета, от эффективных температур (см. приложение 1).

Аналогично вводится шкала цветовых температур. Если известна шкала температур, то, определив из наблюдений спектральный класс или показатель цвета данной звезды, легко найти ее температуру. Температурная шкала определяется эмпирически по звездам с известными, например, эффективными температурами, а также для звезд некоторых типов теоретически.

2.6 Радиус

Еще одна существенная характеристика звезды - ее радиус. Радиусы звезд меняются в очень широких пределах. Есть звезды, по своим размерам не превышающие земной шар (так называемые «Белые карлики»), есть огромные «пузыри», внутри которых могла бы свободно поместиться орбита Марса. Мы не случайно назвали такие гигантские звезды «пузырями». Из того факта, что по своим массам звезды отличаются сравнительно незначительно, следует, что при очень большом радиусе средняя плотность вещества должна быть ничтожно малой. Если средняя плотность солнечного вещества равна 1410 кг/м3, то у таких «пузырей» он может быть в миллионы раз меньше, чем у воздуха. В то же время белые карлики имеют огромную среднюю плотность, достигающую десятков и даже сотен миллионов килограммов на кубический метр.

«Зная эффективную температуру Т и светимость L, можно вычислить радиус R звезды по формуле: L=4pR2sT основанной на законе излучения Стефана - Больцмана (s - постоянная Стефана)» [1].

2.7 Расстояния до звёзд

«Несмотря на все достижения современной техника, определение расстояний до звезд по-прежнему остается одной из труднейших задач астрономии. Расстояния до звезд настолько велики, что для оценки их не пригодны ни километры, ни даже астрономические единицы (а. е.). Астрономы используют такие единицы расстояний, как световой год (св. год), но чаще парсек (пк; сокращение от двух слов паралакс секунда) - расстояние, с которого радиус земной орбиты, равный 1 а. е., виден под углом в 1" (секунда дуги). 1 пк = 3,216 св. г. = = 206265 а.с. =; 3.1 • 10" км. Для целей галактической и внегалактической астрономии используют еще более крупные единицы расстояний: килопарсек (1 кпк = 1000 пк) и мегапарсек (1 Мпк = = i 000000 пк)» [3].

Фотометрический метод определения расстояний.

Освещенности, создаваемые одинаковыми по мощности источниками света, обратно пропорциональны квадратам расстояний до них. Следовательно, видимый блеск одинаковых светил (т. е. освещенность, создаваемая у Земли на единичной площадке, перпендикулярной лучам света) может служить мерой расстояния до них. Выражение освещенностей в звездных величинах (m - видимая звездная величина, М - абсолютная звездная величина) приводит к следующей основной формуле фотометрических расстояний rф (пс):

lgrф = 0,2 (m - M) + 1.

При определении r ф по вышеназванной формуле погрешность составляет ~30%.

Определение расстояния по относительным скоростям. Косвенным показателем расстояния до звезд являются их относительные скорости: как правило, чем ближе звезда, тем больше смещается она по небесной сфере. Определить таким способом расстояние, конечно нельзя, но этот способ дает возможность “вылавливать” близкие звезды. Также существует другой метод определения расстояний по скоростям, применимый для звездных скоплений. Он основан на том, что все звезды, принадлежащие одному скоплению, движутся в одном и том же направлении по параллельным траекториям. Измерив лучевую скорость звезд с помощью эффекта Доплера, а также скорость, с которой эти звезды смещаются относительно очень удаленных, то есть условно неподвижных звезд, можно определить расстояние до интересующего нас скопления.


Информация о работе «Классификация и эволюция звёзд»
Раздел: Авиация и космонавтика
Количество знаков с пробелами: 68587
Количество таблиц: 5
Количество изображений: 2

Похожие работы

Скачать
73214
0
0

... что за свою жизнь открыли более 20 сверхновых. Пальма первенства в такой интересной классификации принадлежит Фреду Цвики – с 1936 г. он идентифицировал 123 звезды. Что такое сверхновые звёзды? Сверхновые звёзды – внезапно вспыхивающие звёзды. Эта вспышка – катастрофическое событие, конец эволюции звёзд крупных размеров. Во время вспышек мощность излучения достигает 1051 эрг, что сопоставимо ...

Скачать
19402
0
0

... секунды она превратится в точку. Это явление получило название «гравитационный коллапс», а также этот объект стали называть «чёрной дырой». Из всего выше сказанного видно, что финальная стадия эволюции звезды зависит от её массы, но при этом необходимо ещё учитывать неизбежную ею потерю этой самой массы и вращение. Виды звезд Во Вселенной существуем множество различных звезд. Большие и ...

Скачать
33651
0
0

... . Что произойдёт, если масса звезды будет настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса? Чёрные дыры образуются в результате коллапса гигантских звёзд массой более 3-х масс Солнца. При сжатии их гравитационное поле уплотняется всё сильнее и сильнее. Наконец звезда сжимается до такой степени, что свет уже не может преодолеть её притяжение. Радиус, ...

Скачать
40785
4
7

... звёзд, которые удалось провести астрономическому клубу «Фомальгаут». Кроме того, будут рассмотрены вопросы, связанные с изучением переменных звёзд на факультативных занятиях по астрономии (физике) в средней школе.   Приложения Некоторые наблюдения затменно-переменных звёзд в 2004г.  В качестве примера приведём результаты наблюдений затменно-переменной звезды АB Андромеды, проведённых летом ...

0 комментариев


Наверх