2. Самоорганизация как основа эволюции

 

Самоорганизация – целенаправленный процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Свойства самоорганизации обнаруживают объекты различной природы: клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив. Термин «самоорганизующаяся система» ввел английский кибернетик У.Р. Эшби.

Флуктуации (от лат. fluctuatio – колебание) – случайные отклонения физических величин от их средних значений; происходят у любых величин, зависящих от случайных факторов. В статистической физике флуктуации вызываются тепловым движением частиц системы. Флуктуации определяют теоретически возможный предел чувствительности приборов. Флуктуации давления проявляются, напр., в броуновском движении малых частиц под влиянием точно не скомпенсированных ударов молекул окружающей среды. Флуктуации характерны для любых случайных процессов.

Концепция самоорганизации в настоящее время приобретает все большее значения, становясь парадигмой исследования обширного класса систем и процессов, происходящих в них. В 70-х годах 20-го века возникла новая наука – синергетика, изучающая механизмы самоорганизации и развития. Областью ее исследований является изучение эволюции различных структур, относительная устойчивость которых поддерживается благодаря притоку энергии и вещества извне. В основе синергетики лежит, среди прочих, важное утверждение о том, что материальные системы могут быть закрытыми и закрытыми, равновесными и неравновесными, устойчивыми и неустойчивыми, линейными и нелинейными, статическими и динамическими. Принципиальная же возможность процессов самоорганизации обусловлена тем, что в целом все живые и неживые, природные и общественные системы являются открытыми, неравновесными, нелинейными.

Порядок и хаос. В результате протекания процессов в изолированных системах сами системы переходят в состояние равновесия, которое соответствует максимальному беспорядку системы – равновесный тепловой хаос. Таким образом, самоорганизация, или эволюция в случае замкнутой системы приводит ее в состояние максимального беспорядка. В реальности, тем не менее, часто наблюдаются совершенно противоположные явления.

Уже теория Канта и Лапласа об образовании упорядоченной Солнечной системы из хаотических туманностей противоречила II началу термодинамики. Но особенно ярко проявилось противоречие II начала термодинамики с эволюционной теорией Дарвина. Ведь согласно ей, в мире живого естественно протекающие процессы ведут к усложнению форм и структур, к увеличению порядка, избавлению от хаоса и удалению от равновесия. Другими словами, самоорганизация в живой природе приводит систему к прямо противоположному состоянию, чем самоорганизация в неживых системах. Все это привело к появлению понятия открытой системы, которое и позволило устранить упомянутые противоречия.

Открытость систем. Такие понятия, как изолированная (закрытая) система, необратимые процессы являются идеализацией. При изучении обратимых процессов (например, качание маятника в вакууме при отсутствии трения) нет смысла говорить о направлении течения времени, т. к. прошлое, настоящее и будущее в этом случае не отличаются. Поэтому в уравнениях обратимых процессов время выступает всего лишь как параметр, который можно изменять. Но в реальности в случае с маятником всегда присутствует трение, колебания маятника будут затухающими, и прошлое, настоящее и будущее будут уже отличаться. Эволюционным принципом необратимых процессов в живой природе стало II начало термодинамики, утверждающее, что энтропия изолированной системы возрастает. Именно рост энтропии устанавливает направление протекания процесса, т.е. «стрелу времени».

В своей книге «Что такое жизнь» выдающийся австрийский физик Э. Шредингер указал на то, что средство, при помощи которого организм поддерживает себя на достаточно высоком уровне упорядоченности, т.е. на достаточно низком уровне энтропии, в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды. Другими словами, организм извлекает из окружающей среды негэнтропию. Открытая система заимствует энергию и вещество из окружающей его среды и одновременно выводит в окружающую среду отработанное вещество и отработанную энергию. Вырабатывая и заимствуя энергию, открытая система производит энтропию, но она не накапливается в ней, а выводится в окружающую среду. С поступлением энергии и вещества в открытую систему ее неравновесность возрастает, разрушаются прежние связи между элементами и возникают новые, которые приводят к новой структуре, новым кооперативным процессам, т.е. к коллективному поведению её элементов.

Нелинейность. Сложные системы являются нелинейными. Для их описания используются нелинейные математические уравнения, т.е. уравнения, в которых искомые величины входят в степенях больше единицы, в составе математических функций (тригонометрических, логарифмических и т.п.) или коэффициенты зависят от свойств среды и особенностей протекания процесса. Нелинейные уравнения могут иметь несколько качественно различных решений. Физически это означает возможность различных путей эволюции системы.

Диссипативность. Великий русский математик А.М. Ляпунов разработал общую теорию устойчивости состояний систем. Очень кратко ее идею можно выразить следующим образом. Устойчивые состояния систем не теряют своей устойчивости при флуктуациях физических параметров, поскольку система за счет внутренних взаимодействий способна погасить возникающие флуктуации. Неустойчивые системы, наоборот, при возникновении флуктуаций способны усиливать их, и, в результате такого нарастания амплитуд возмущений система уходит из стационарного состояния. Критерием эволюции при этом является величина (dS/dt) < 0, которая указывает направление развития физической системы к устойчивому стационарному состоянию. Эти процессы происходят достаточно медленно, поэтому на каждом этапе как бы достигается равновесие. Величина прироста энтропии за единицу времени в единице объема называется функцией диссипации, а системы, в которых функция диссипации отлична от нуля, называются диссипативными. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного движения и, в конечном счете, в тепло. Практически все системы являются таковыми, поскольку трение и прочие силы сопротивления приводят к диссипации энергии (диссипация < лат. dissipatio – разгонять, рассеивать).

При определенных условиях суммарное уменьшение энтропии за счет обмена потоками с внешней средой может превысить ее внутреннее производство. Тогда неупорядоченное однородное состояние системы может потерять устойчивость. В ней возникают и могут возрасти до макроскопического уровня т.н. крупномасштабные флуктуации. При этом из хаоса могут возникнуть структуры, которые последовательно начнут переходить во все более упорядоченные. Образование этих структур происходит не из-за внешнего воздействия, а за счет внутренней перестройки системы, поэтому это явление и получило название самоорганизации. При этом энтропия, отнесенная к тому же значению энергии, убывает. Пригожин назвал упорядоченные образования, возникающие в диссипативных системах в ходе неравновесных необратимых процессов, диссипативными структурами.

На макроуровне диссипативность проявляется как хаос. На микроуровне хаос – это не разрушающий фактор, а сила, выводящая систему путь образования новых структур.

Бифуркация. Выше было сказано, что нелинейная система уравнений, которой описывается практически любая реальная сложная система, имеет не одно, а подчас целый спектр решений. Ответвления от известного решения появляются при изменении значения параметров системы. Поэтому мы рассматриваем здесь еще одно понятие – управляющие параметры (параметры порядка). Изменения управляющих параметров способны вызвать катастрофические, т.е. большие скачки переменных системы, и эти скачки осуществляются практически мгновенно.

Бифуркация (от лат. раздвоение, размножение). Усложнение структуры и поведения системы тесно связано с появлением новых путей решения в результате бифуркаций. В сильно неравновесных условиях процессы самоорганизации соответствуют «тонкому взаимодействию» между случайностью и необходимостью, флуктуациями и детерминистскими законами. Вблизи бифуркаций, т.е. резких, «взрывных» изменений системы, основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями преобладает детерминизм. Ситуацию, возникающую после воздействия флуктуации на систему и возникновения новой структуры, И. Пригожин назвал порядком через флуктуацию или «порядком из хаоса». Флуктуации могут усиливаться в процессе эволюции системы или затухать, что зависит от эффективности «канала связи» между системой и внешним миром.

Выделим основные условия и положения самоорганизации систем:


Информация о работе «Антропогенез и самоорганизация»
Раздел: Биология
Количество знаков с пробелами: 34015
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
42276
0
0

... , особенно степень резервирования. У человека она равна нескольким сотням, у приматов, собак, дельфинов - в пределах 10. Начальная стадия антропогенеза очень показательна с точки зрения теории самоорганизации. Возникновение новой стабильной структуры – человека разумного – началось в заведомо неблагоприятных для человека условиях. Австралопитеки должны были погибнуть, вытесненные их привычной ...

Скачать
172870
0
0

... это не вызовет симпатии некоторых представителей более старых и пассивных этносов. Неприязнь малых этносов, в свою очередь, может быть связана со стремлением к противодействию ассимиляции доминирующими этносами. Молодая культура, в свою очередь, может беспокоить более старые и потому более ровные по своему характеру этносы своим радикализмом и агрессивностью. И все же процессы системосбережения ...

Скачать
508393
2
1

... инерциальных системах отсчета. Пространственно-временной континуум – неразрывная связь пространства и времени и их зависимость от системы отсчета. Тема 11. Основные концепции химии   1. Химия как наука, ее предмет и проблемы Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К ...

Скачать
182742
0
8

... ноосфере — сфере взаимодействия природы и об­щества, в пределах которой разумная человеческая деятель­ность становится определяющим фактором эволюции. Большой вклад в такое понимание естественно-научной картины мира и места человека в истории Земли внес П. Тейяр де Шардев. Согласно ему, в ходе развития Вселенной на Земле естественным "скачкообразным образом" совершился переход от неживого ...

0 комментариев


Наверх