3.2.3 Физические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО

В НГДУ «ЛН» магнитные депарафинизаторы типа МОЖ-22Ш были внедрены на 17 скважинах (в 2000 году – на 7 скважинах, в 2002 году – на 10 скважинах) В качестве основного метода борьбы с АСПО магнитные депарафинизаторы были использованы на трех скважинах (№108, 6551А, 12518А), на 4 скважинах – в комбинации с остеклованными НКТ и на 10 скважинах – в комбинации со штангами центраторами – депарафинизаторами.

За период с октября 2000 года, когда началось внедрение магнитных депарафинизаторов, по октябрь 2002 года на данной категории скважин было проведено 16 подземных ремонтов по причине АСПО, причем на 3 скважинах (№108, 4030, 12946) по два ремонта. На скважинах, где магнитные депарафинизаторы были использованы в качестве основного метода борьбы с АСПО без применения других методов, межочистной период составил 50–110 суток и при подземных ремонтах по причине АСПО они были извлечены. На остальных скважинах межочистной период составил от 80 до 360 суток.

Анализ применения магнитных депарафинизаторов в качестве самостоятельного метода борьбы с АСПО и в комбинации с другими методами показал неэффективность данного метода и отказ от его применения в дальнейшем.

 

3.2.4 Химические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО

3.2.4.1 Применение промывок различного типа

В качестве дополнительного метода борьбы с АСПО, в НГДУ «ЛН» на 77,9% осложненного фонда скважин, эксплуатируемых УШГН, используются промывки различного типа (дистиллятом в комбинации с нефтью, МЛ-80Б).

Динамика проведения промывок представлена в таблице 7


Таблица 7. Динамика проведения промывок

Виды промывок Годы
1997 1998 1999 10 месяцев
2000 2001

Всего промывок,

– дистиллят + нефть

1516

745

1684

1174

1289

625

1128

546

938

551

В качестве растворителя используется нефтяной дистиллят, как собственного производства, так и получаемый в ОЭ НГДУ «Татнефтебитум».

Более 58% всех проведенных в 2004 году обработок составили промывки дистиллятом в комбинации с нефтью. Содержание нефти в растворе при этом составляет от 20 до 50%. Выбор концентрации осуществляется технологическими службами нефтепромыслов с учетом скважинных условий.

Всего промывками охвачено 484 скважины с периодичностью промывок 2–3 раза в год. Объем разовой нефтедистиллятной обработки составляет в среднем 8 м3.

3.2.4.2 Гидравлический расчет промывки скважины нефтедистиллятной смесью

Исходные данные:

Скважина №1828А,

Н забой = 1620 м – искусственный забой,

Диаметр эксплуатационной колонны Dэкс. к =146 мм,

Диаметр НКТ dHKT = 73 мм,

Диаметр штанг dШТ. = 22 мм,

НН2Б – 44,

Плотность дистиллята ρД = 707 кг/м3,

Q = 8 м3, В=0%.

Техника для промывки:

ЦА – 320; dпоршня = 100 мм; N = 180 л/с

Производительность агрегата:

1 скорость – 1,4 л/с 2 скорость – 2,55 л/с

3 скорость – 4,8 л/с 4 скорость – 8,65 л/с

1. Расчет гидравлического сопротивления при движении дистиллята в кольцевом пространстве.

P1 = λ· (HHKT · ρД)/(Dэкс.к – dHKT) х (vн2/2), Πa (1)

где: l – коэффициент трения, l = 0,035;

ННКТ - длина колонны НКТ, м;

v н – скорость нисходящего потока жидкости, м/с;

ρД – удельный вес дистиллята, кг/м3;

Dэкс. к – диаметр эксплуатационной колонны, м;

dHKT – диаметр НКТ, м;

При работе на 1 скорости:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (0,172/2) = 0,0071·106 Па;

на 2 скорости:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (0,372/2) = 0,0339·106 Па;

на скорости 3:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (0,532/2) = 0,0696·106 Па;

на скорости 4:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (1,032/2) = 0,263·106 Па.

2. Гидравлическое сопротивление по уравновешиванию столбов жидкости в НКТ и колонне:

P2 = (ρн – ρД)·g ·ННКТ,(2)

где: ρн – плотность нефти.

С достаточной точностью для расчетов

P2 = (820 –707)·9,81·1450 = 1,607 ·106 Па

3. Гидравлическое сопротивление в трубах НКТ:


Р3 = j ·lНКТ· ННКТ·ρД · v 2в/[2 (dВН – dШТ.)] (3)

где: j – коэффициент, учитывающий потери на местных сопротивлениях при движении дистиллята в НКТ,

j =1,1;

lНКТ – коэффициент трения в НКТ, lНКТ = 0,04;

dВН – внутренний диаметр НКТ, м;

dШТ. – диаметр штанг, м;

v в-скорость восходящего потока, м/с;

на 1 скорости:

Р3 = 1,1·0,04·1450·707·0,4 2/[2·(0,062 – 0,022)] = 0,09·10 6 Па

на 2 скорости

Р3 = 1,1·0,04·1450·707·0,8 2/[2·(0,062 – 0,022)] = 0,361·10 6 Па

на скорости 3

Р3 = 1,1·0,04·1450·707·1,6 2/[2·(0,062 – 0,022)] = 1,443·10 6 Па

на скорости 4

Р3 = 1,1·0,04·1450·707·2,91 2/[2·(0,062 – 0,022)] = 4,775·10 6 Па

Гидравлические сопротивления на выходе агрегата ЦА-320 при обратной промывке ничтожно малы, при расчете их не используют.

5. Давление на выкиде насоса:

Рв = Р1+ Р2+ Р3; (4)

На 1 скорости:

Рв = 0,0071·10 6 + 1,607·10 6 + 0,09·10 6 = 1,704·10 6 Па;

На 2 скорости:

Рв = 0,0339·10 6 + 1,607·10 6 + 0,361·10 6 =2,002·10 6 Па;

На 3 скорости:

Рв = 0,0696·10 6 + 1,607·10 6 + 1,443·10 6 =3,120·10 6 Па;

На 4 скорости:

Рв = 0,263·10 6 + 1,607·10 6 + 4,775·10 6 =6,645·10 6 Па.

6. Рассчитываем мощность насоса:

N = Pв· Q/η, (5)

где η – К.П.Д насоса, η = 0,65;

на 1 скорости:

N =1,704·10 6 Па·1,4/0,65 = 3,67 кВт;

на 2 скорости:

N =1,704·10 6 Па·2,55/0,65 = 6,68 кВт;

на 3 скорости:

N =1,704·10 6 Па·4,8/0,65 = 12,58 кВт;

на 4 скорости:

N =1,704·10 6 Па·8,65/0,65 = 22,68 кВт.

7. Использование максимальной мощности:

К =  (6),

где максимальная мощность насоса Nmах = 130 кВт;

на 1 скорости:

К = 3,67·100/130 = 2,82%;

на 2 скорости:

К = 6,68·100/130 = 5,14%;

на 3 скорости:

К= 12,58·100/130 = 9,68%;

на 4 скорости:

К = 22,68·100/130 = 17,45%.


Информация о работе «Борьба с парафином в условиях НГДУ "Лениногорскнефть"»
Раздел: Геология
Количество знаков с пробелами: 69510
Количество таблиц: 14
Количество изображений: 3

Похожие работы

Скачать
105990
25
4

... - 78 % Трубы всех типов исполнения, имеют длины: 1 группа - от 5,5 до 8,5 м 2 группа - свыше 8,5 до 10 м.   3.2 Техника и оборудование применяемое для депарафинизации скважин в условиях НГДУ «ЛН» Для депарафинизации скважин в НГДУ “ ЛН” применяют различное оборудование. Краткое их описание и технические характеристики приведены ниже. Наиболее часто применяют для депарафинизации скважин ...

Скачать
37589
9
2

... = 3148,5 т.р. + 1405,8 = 17206,5 т.р. С увеличением количества ремонтов затраты по техническому ремонту составили 17206,5 т.р 2. ОРГАНИЗАЦИОННЫЙ РАЗДЕЛ   2.1 Сущность технологического процесса борьбы с парафином   Рассмотрим тепловой метод удаления парафина. Обычно в скважину и призабойную зону закачивают горячую нефть, керосин, дизельное топливо или боду с добавками ПАВ или без них. Для ...

Скачать
85759
9
10

... с использованием шкивов. 6.Постоянно производить выводы, после ПРС, о его причине. 3.3 Механизм и условия формирования АСПО в скважине Современные представления о механизме образования парафиновых отложений на скважинном оборудовании можно условно подразделить на осадочно-объемную теорию и кристаллизационно-поверхностную. Первая предполагает, что кристаллы парафина образуются в объеме ...

Скачать
110016
12
2

... реагента от плотности пластовой воды Марка реагента лотность вод, обводняющих скважину, кг/м3 СНПХ – 9633 В1 1015-1060 СНПХ – 9633 В2 1050-1130 СНПХ – 9633 А 1130-1185 3.5 Технология ремонтно-изоляционных работ с применением СНПХ-9633 на примере скважины 15403а НГДУ «Лениногорскнефть»   3.5.1 Требования к выбору объектов применения При выборе объектов для обработки композицией ...

0 комментариев


Наверх