3. Новообразованные глинистые минералы (глауконит, палыгорскиты, шамозиты и иногда тальк) свидетельствуют о химическом осадконакоплении.
4.Более того, новообразованные глинистые минералы позволяют восстановить господствовавшие на континенте климатические условия. Лучший пример тому – палыгорскит, возникающий при интенсивном гидролизе минералов на континенте.
5.Трансформированные глинистые минералы позволяют реконструировать условия, господствовавшие на континенте (деградированные минералы), и условия седиментации (аградированные минералы).
В целом данные по глинистым минералам следует с большой осторожностью использовать при выяснении условий осадконакопления. Но если глинистые минералы имеют обломочное происхождение, они столь же мало говорят об условиях седиментации, как и обломочный кварц.
Метаморфизм глинистых пород
Глины являются основным типом силикатных пород, возникающим в поверхностных условиях. Если при выветривании происходит разрушение и преобразование силикатных пород, то при метаморфизме развивается их регенерация.
Постседиментационная эволюция каолинита и монтмориллонита.
На стадии эпигенеза, до начала метаморфизма, каолинит преобразуется в иллит и серицит. Об этом свидетельствует широкая серицитизация каолинитов под влиянием минерализованных растворов и отсутствие каолинита в сланцах, стоящих на пороге метаморфизма.
При процессах регионального метаморфизма в условиях высоких температур глины переходят в плотные глинистые сланцы (аргиллиты и филлиты). Выше 3000 каолинит полностью разрушается, превращаясь при наличии щелочей в серицит, слюды, полевые шпаты, а отсутствие их – в силикаты алюминия: андалузит, силлиманит, дистен и другие минералы, слагающие кристаллические сланцы.
Эволюция богатых каолинитом и бедных калием осадочных пород должна привести к возникновению пирофиллита.
В еще большей степени на стадии эпигенеза изменяется монтмориллонит. Он также исчезает до начала метаморфизма. Хотя эволюция монтмориллонита и не была еще прослежена шаг за шагом, однако имеются основания полагать, что глиноземистые монтмориллониты под влиянием минерализованных растворов преобразуются в иллит и серицит. Под влиянием магнезиальных растворов монтмориллонит может замещаться хлоритом. Хлорит может развиваться и по триоктаэдрическому монтмориллониту.
Таким образом, каолинит и монтмориллонит преобразуются на стадии эпигенеза, задолго до начала метаморфизма.
Иллит и хлорит. Эти минералы систематически возникают на стадии эпигенеза. В сланцах (серицитовых, хлоритовых, блестящих, зеленых и т.д.) основными породообразующими минералами являются серицит и хлорит. Наблюдается значительная эволюция от глинистых сланцев, сложенных чешуйками глинистых минералов размером в микроны или десятки микронов, к метаморфическим сланцам эпизоны со слюдистыми чешуйками размером в миллиметры или десятки миллиметров.
Иллиты и хлориты осадочных отложений характеризуются многочисленными изоморфными замещениями и по сравнению с крупнокристаллическими слоистыми силикатами, возникшими при метаморфизме, содержат весьма обильные чуждые примеси. По мере возрастания давления и температуры и развития метаморфических процессов структура глинистых минералов, стремясь достигнуть минимума внутренней энергии, становится все более совершенной. Железо и частично магний удаляются из иллита и входят в решетку хлоритов.И обратно, из решетки хлорита удаляются чуждые ионы, в частности алюминий, которые поступают в растущие слюдистые минералы. Перераспределение элементов сопровождается ростом кристаллов слоистых силикатов. Именно обильные замещения обусловливают небольшой размер частиц слоистых силикатов, а по мере того как в процессе метаморфизма происходит «очищение» структуры размеры кристаллов растут.
Небходимо помнить, что при эволюции глин в глинистые сланцы не наблюдается прямого перехода слоистых силикатов глин в крупночешуйчатые слоистые силикаты сланцев. Здесь имеют место сортировка, перемещение, обмен элементами между слоистыми силикатами и возникают более совершенные, а потому более крупные кристаллы. В конечном итоге формируется сланец, сложенный глиноземистым, кремнеземистым и магнезиальным серицитом и хлоритом. Содержание различных минералов определяется первичным составом глины.
Слюды слюдистых сланцев По мере возрастания степени метаморфизма сланцы низких ступеней метаморфизма постепенно переходят в двуслюдяные сланцы, состоящие из мусковита и биотита. Эволюция серицита развивается путем удаления чуждых ионов, в частности ионов магния, и путем упорядочения решетки, теряющей воду и обогащающейся калием. Одновременно происходит преобразование хлорита в биотит. При этом магний покидает межслоевые прокладки хлорита и наряду с железом занимает октаэдрические позиции, а калий обеспечивает межслоевые связи. Перераспределение элементов в ассоциации белая – темная слюда, устойчивой в зоне слюдистых сланцев, происходит в ином порядке, чем при выветривании. Нужно отметить, что когда в эпизону попадает значительное количество натрия, он выделяется из решетки слоистых силикатов и возникает альбит – минерал, достаточно характерный для многих слюдистых сланцев. Этот минерал формируется значительно чаще, чем парагонит.
На стадии метаморфизма натрий и кальций обычно входят в решетку известково-натриевых полевых шпатов. В серии филлитов рано или поздно возникают калиевые полевые шпаты. Они развиваются прежде всего по мусковиту и при этом алюминий переходит в четверную координацию. В отличие от богатого глиноземом мусковита, биотит не может замещаться полевыми шпатами, поскольку в их решетке нет места магнию и железу. Таким образом, судьба биотита и мусковита в мезозоне существенно различна. Поэтому силикатные породы мезозоны в отличие от сланцев и слюдистых сланцев включают не только слоистые силикаты, но и обильные полевые шпаты, а единственным свидетелем былого состава породы является биотит В катазоне биотит, в свою очередь, замещается полевыми шпатами и дает начало ортоклазам и лишенным глинозема магнезиально – железистым минералам, например ромбическим пироксенам.
На высоких ступенях метаморфизма, например в гранулитовых фациях, господствовавшие в гидросфере слоистые силикаты полностью исчезают. Алюминий входит в решетку полевых шпатов, а магний и частично железо – в решетку пироксенов. Титан и железо, постепенно переходившие на стадиях эпигенеза и начального метаморфизма в силикатную форму, вновь высвобождаются в идее ильменита, характерного для гранулитовых фаций.
Месторождения
Большое количество месторождений каолина распространено на территории Украины, в зонах выветривания выходов массивно– кристаллических пород Южно-Русского щита. Главнейшими из них являются: Глуховецкое, Турбовское и Райковское(Винницкая область), Просянское (Днепропетровская область) и др. На Урале большое количество первичных и вторичных месторождений, преимущественно огнеупорных каолинов распространено в Свердловской и Челябинской областях. В Крыму, в районах от Карасубазара до Севастополя установлены глины серовато-зеленого цвета, состоящие из коллоидального монтмориллонита, которые хорошо адсорбируют едкие щелочи и полностью поглощают углекислые щелочи из слабых водных растворов и поэтому широко применяются в мыловаренной промышленности.
Заключение.
Из большого числа разновидностей известны пород только некоторые являются наиболее распространенными. Три главных типа – песчаники, глинистые сланцы и известняки – составляют 95% и более всех пород. А среди этих главных типов глины составляют 70-83%.
Глины считаются «малым полезным ископаемым»; по традиции многие думают, что глины относительно дешевы. В действительности это не так. Если учесть общую стоимость всех добываемых глин, окажется, что она весьма велика – выше стоимости большинства других полезных ископаемых.
Глины используются в нефтяной промышленности для очистки продуктов дробной перегонки нефтей от посторонних взвешенных примесей; в текстильной- при отделке суконных материалов; в резиновом производстве - в качестве активного наполнителя; в мыловаренной и косметической промышленности; применяются для очистки воды и пищевых продуктов; в фармацевтической промышленности.
Главнейшим и старейшим потребителем является керамическая промышленность. Каолин применяется в тонкой керамике при производстве фарфора и фаянса; в бумажной промышленности в качестве наполнителя.
Практичное использование глин велико и важно для многих областей деятельности человека.
Список литературы
1. Ж. МИЛО «ГЕОЛОГИЯ ГЛИН» ЛЕНИНГРАД. 1968г.
2. Ф.ДЖ. ПЕТТИДЖОН «ОСАДОЧНЫЕ ПОРОДЫ». МОСКВА 1981г.
3. ДЖ. ГРИНСМИТ «ПЕТРОЛОГИЯ ОСАДОЧНЫХ ПОРОД». МОСКВА «МИР» 1981г.
4. Р.Э.ГРИМ «МИНЕРАЛОГИЯ И ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ГЛИН». МОСКВА «МИР» 1967г.
5. А.Г. БЕТЕХТИН «МИНЕРАЛОГИЯ» МОСКВА 1950г.
6. ГОРНАЯ ЭНЦИКЛОПЕДИЯ. МОСКВА «СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ» 1986г.
... от других глин высоким содержанием глинозема Аl2О3, меньшей пластичностью и обладает свойством придавать повышенную белизну обожженному керамическому материалу. 5. Структуры и текстуры глинистых горных пород Структуры и текстуры глинистых пород Под структурой глин подразумевают распределение компонентов породы по гранулярному составу, форму частиц, их пространственную ориентировку по ...
... , сложенных известняками или доломитами. Мрамор довольно устойчив к «обычному» выветриванию, сохраняет крутые, вплоть до «отвесных», природные склоны. 3. Назовите основные физико-механические свойства горных пород, необходимые для проектирования и строительства. Опишите условия образования и строительные свойства морских грунтовых отложений Основные физико-механические свойства горных пород ...
... породы. 4. Если породы сложены аморфным веществом, это аморфные породы. Оформим в виде схемы приведенный алгоритм определения горных пород первого порядка. Напишем алгоритмы второго порядка определения отдельно для обломочных, глинистых, кристаллических и аморфных пород. Алгоритмы определения обломочных пород. Так как обломочные породы сложены обломками, то эти породы можно разделять ...
... частиц превышает 30%» (Cepгeeв и др., 1973, с. 312); «В инженерно-геологической практике глинами называют тонкодисперсные осадочные породы, в которых содержится не менее 30% частиц диаметром меньше 0,002 мм» (Ломтадзе, 1970, с. 195). Области практического применения и использования глин в экономике весьма разнообразны и обширны. Основными можно считать глины как полезные ископаемые, вместилища ...
0 комментариев