1 а = 0,14 (1 + 0,01i); (12)

при i<1 a=0,14i 0.25; (13)

Высота волны 1% обеспеченности в глубоководной зоне (hd1%) будет равна:

 (14)

где K1% находится по формулам (6.13 - 6.16) при i = l, т.е.


 (15)

В формуле (6.17) Кr и Кp - коэффициенты шероховатости и проницаемости откоса, зависящие от типа крепления, могут быть определены по следующим зависимостям:

 = (16)

где r - средний размер шероховатости, м (средняя крупность материала крепления или средний размер бетонных блоков).

В формуле (16) при значениях r/hd1%0,002 и r/hd1%0,2, соответственно, следует принимать Кr = 1 и Кp = 0,9.

При r/hd1%=0,13 принимаю Кr = 0,72 и Кp = 0,55.

Кp = (0,9 - r/hd1%) Кr (17)

в которой при значениях выражения (0,9-r/hd 1%) <0,7 следует принимать (0,9 - r/hd1%) = 0,7; Кr - определяется по (16).

Коэффициент Кsp в формуле (3-6), зависящий от расчетной скорости ветра и крутизны верхового откоса, может быть определен по формуле (18):

Кsp =0,11 [0,15 - Vw (l+0,4m1) - 0,6m1 + 8,5] =0,11 [0,15х28 (1+0,4х1,8) - 0,6х1,8+8,5] =1,6 (18)

в которую при скорости ветра Vw>20 м/с и Vw<10 м/с следует подставлять, соответственно Vw=20 м/с и Vw =10 м/с, а при заложениях верхового откоса m1>5 величину Кsp=1,6 для значений Vw >20 м/c и Ksp =1,2 для значений Vw <10 м/с.

Коэффициент пологости волны Krun в формуле (5) зависит от крутизны (заложения m1) верхового откоса и может быть определен при глубине воды перед сооружением H12 hd1% по следующим зависимостям:

при m1 1,5

Krun = l,25 + lg (l + 6) (19)

при m1>1,5

 (20)

При глубине воды перед сооружением H1<2 hd1% и при значениях m1>l,5 вместо формулы (3-22) действует формула:

 (21)

Полученные по формулам (20) и (21) значения Krun следует ограничивать величиной Krun 2,6 - 2,7.

Коэффициент Kβ в формуле (3-6), учитывающий угол β подхода фронта волны к плотине (угол β можно принять равным углу αw между продольной осью водохранилища и направлением ветра, β=αw), определяется по зависимости:

=1 (22)

где β =0 - угол подхода фронта волны, град.

Высота наката на откос волн, произвольной обеспеченности i,% по накату определяется по формуле:

 м (23)

где Кнi - коэффициент, учитывающий обеспеченность по накату, значения которого определяют по формуле:

 (24)

в которой i - заданная обеспеченность по накату,%.

В случае мелководной зоны (H1) для определения высоты наката волны пользуются формулой (6.6), а высоту и длину волны корректируют по зависимостям:

 (25)

 (26)

где  и  - средние значения высоты и длины волны;

 и  - коэффициенты, определяемые по формулам:

= 1,06 { [2-H1/] H1/] }0,38 (27)

= { [2,15 - H1/] H1/}0,42 (28)

 


2.3 Прогноз геотехнических характеристик грунтов в материалах плотины: в ядре (суглинок)

При проектировании грунтовых плотин необходимо знать физико-механические (геотехнические) свойства грунтовых материалов, приготавливаемых из местных грунтов карьеров или полезных выемок гидросооружений (последнее обычно предпочтительнее).

В грунтовых плотинах свойства грунтов можно регулировать, изменяя их зерновой состав, влажность, метод укладки (послойная статическая или вибрационная укатка, наброска без укатки, отсыпка в воду), которые определяют плотность укладки грунтов и как следствие, их прочность, деформируемость и водопроницаемость.

В грунтовых плотинах глинистый грунт обычно используют в водоупорных элементах (ядре или экране), в нашем случае в ядре. В плотину глинистый грунт стремятся укладывать при оптимальной влажности Wonт, при которой при выбранном методе уплотнения (тип катка, число его проходок, толщина слоя) достигается максимальная плотность сухого грунта γсухмакс. В общем случае Wonт грунта зависит от типа катка и числа его проходок. В нашем случае Wonт=10,68%. .

Оптимальную влажность глинистого грунта определим методом Проктора (стандартного), т.к у нас легкий каток.

Согласно методу Проктора (табл.6.6) грунт испытывают в лаборатории на уплотнение ударной нагрузкой. Опыты проводят в стальном цилиндре диаметром 100, 150 и 350 мм в зависимости от максимальной крупности частиц грунта (соответственно, 20, 32 и 60 мм), в который укладывают последовательно 3 или 5 слоев грунта и утрамбовывают его падающим грузом массой, соответственно, 2,5, 4,5 и 15 кг. Число ударов и высота падения груза подобраны так, чтобы интенсивность уплотнения 1 м3 грунта по стандартному Проктору была эквивалентна легким каткам, а по модифицированному Проктору - тяжелым каткам.

Допустимое значение плотности сухого глинистого грунта γсух при укатке можно приближенно определить по формуле (6.69 Приложения 6.12):

Определение плотности сухого грунта:

γсух = γч γв (1 - V) / (γв + Wрасч γч) = 2,7*1 (1-0,04) / (1+11,68*2,7) = 1,9 т/м3

где γч - плотность частиц грунта (т/м3); γв - плотность воды; V - объем защемленного в грунте воздуха в долях 1,0 (в глине 0,03, суглинке 0,04, супеси 0,05, лёссе 0,07); Wрасч - расчетная влажность грунта (в долях 1,0).

Обычно в каменно-земляных плотинах 1 и 2 классов расчетное значение плотности глинистого грунта при укатке γсухрасч принимается не менее γсухмакс по стандартному Проктору.

Вместо формулы (6.69) для определения γсухмакс суглинистых грунтов каменно-земляных плотин можно использовать корреляционную зависимость (6.70), полученную по натурным данным в виде:

γсухмакс = 1,44 + 0,88 ln [γч/ (1+eТ)] = 1,44+0,88 ln [2,7/ (1+0,675)] =1,86 т/м3

WТ =Wпл. + Wp= 7+18=25%

Тогда eТ = γчWТ = 2,7*0,25= 0,675

 

γч/ (1+eТ) - плотность сухого грунта при влажности WТ.

Определение оптимальной влажности грунта

Wопт = 11,83 ln (eопт WТ) + 37,07,% = 11,83 ln (0,43*0,25) +37,07= 10,68%

eопт = (2,75 - 1,86) / 1,86=0,45

 

Определение коэффициента фильтрации для плотины

По формуле Жарницким В.Я. для коэффициентов фильтрации суглинков ряда каменно-земляных плотин в следующем виде:

kф =0,574 [e/ (P<5 мм WТ)] 3,22 10-7, см/с

kф =0,574 [0,42/ (0,63* 0,25)] 3,22 10-7 = 1,35* 10-6 см/с

Определение расчетных параметров.

На основе этих исследований был обоснован безразмерный эквивалент физических параметров - обобщенный коэффициент физических характеристик обломочно-пылевато-глинистого грунта Мτ в качестве меры связей физических характеристик с механическими. Безразмерный эквивалент грунта Мτ определяется как:

Мτ= p1 [IP (1+IL)] / p2

где р1 - процентное содержание заполнителя (частицы <2 мм) в грунте; р2 - то же, обломков (частицы ≥2 мм); IP - число пластичности заполнителя; IL - показатель текучести заполнителя.

Мτ= p1 [IP (1+IL)] / p2 =0,63 [0,07 (1+0,25)] /0,37=0,15

Нормативные значения углов внутреннего трения крупнообломочных грунтов с пылевато-глинистым заполнителем и пылевато-глинистых грунтов с крупными включениями при консолидированном срезе φп (град) определяют по степенной зависимости:

φп = k1 kφ 46,0 (0,3) Mτ

где k1 - коэффициент окатанности обломков для угла φп грунтов с окатанными обломками k1; для грунтов с острыми обломками k1 =1; kφ - коэффициент, учитывающий прочность обломков; Мτ - физический эквивалент грунта.

k1=0,88

φп = k1 kφ 46,0 (0,3) Mτ =0,88*1*46* (0,3) 0,15 =33,79

Нормативные значения сцепления крупнообломочных грунтов с пылевато-глинистым заполнителем и пылевато-глинистых грунтов с обломками для схемы консолидированного среза Сn (кПа) определяют по формуле:

Сn = k2 kγ 79,0 Мτ0,32/ (1 + IL) 3,62

где k2 - коэффициент окатанности обломков для сцепления: для грунтов с окатанными обломками, k2=0,9.

Сn = k2 kγ 79,0 Мτ0,32/ (1 + IL) 3,62=0,9*1,1*79*0,150,32/ (1+0,25) 3,62=18,64КПа≈1,9т/м2

 

Нормативные значения модулей деформации Е, МПа, крупнообломочных грунтов с пылевато-глинистым заполнителем и пылевато-глинистых грунтов с обломками определяют по формуле:

E = kE kL kp (E) / (0,07 Мτ + 0,017)


где Мτ - физический эквивалент грунта; kE - коэффициент, учитывающий прочность крупных обломков; kL - коэффициент, зависящий от процентного содержания обломков Р2 и показателя текучести пылеватого или глинистого заполнителя IL; kp (E) - коэффициент, учитывающий плотность грунта, принимается в зависимости от соответствия фактической плотности грунта γф, т/м3, ее нормированным значениям γn.

 

γn= ks γn1=2,16

E = kE kL kp (E) / (0,07 Мτ + 0,017) =1*0,75*1,05/ (0,07*0,15+0,017) =29,78

в боковых призмах (галечник)

 

Определение минимальной плотности сухого грунта

γсухмин = А γч /2,65 [∆Р (K1/2)] 0,05

=  

γсухмакс = 1,794 +0,125 ln [1 - n) k γч], т/м3

По Жарницкому В. определение пористость горной массы, n

n = 0,45- 0,1 lg (d60/d10) = 0,45- 0,1 lg (3/0,007) =0,186

определение коэффициент неравномерности раскладки частиц грунта в слое, k

k=1+ 0,05 (d60/d10) = 1+ 0,05 (3/0,007) =22,42

определение максимальной плотности сухой горной массы

γсухмакс = 1,794 +0,125 ln [1 - n) k γч] = 1,794 +0,125 ln [1 - 0,186) 22,42*2,65] =2,2 т/м3

emaxчсухмин/ γсухмин =0,65

emin= γч- γсухмакс/ γсухмакс=0,2

e= emax- ID (emax-emin) =0,65-0,87 (0,65-0,2) =0,26

 

где Id - коэффициент плотности уплотнения

 

γсухмин = А γч /2,65 [∆Р (K1/2)] 0,05=1,6

Определение расчетных параметров

ψ0 = θ + α IkD =40 º +8 º.0,870,9 = 47,06

tgφрасч = tgφнорм/1,15= tg47/1,15= 0,93

φ=43º

Заложение откосов плотины определяется расчетами устойчивости и зависит от конструкции плотины, расчетных характеристик прочности грунтов тела плотины, условий эксплуатации, геологического строения основания и т.п. На предварительных стадиях проектирования заложения откосов назначается на основе опыта проектирования и эксплуатации существующих плотин. Предварительно назначаем угол заложения откосов m1 и m2: m2 - Низовой откос сtg αн =1,3/tgφрасч = 1,4, m1-Верховой откос сtg αв= сtg αн+0,2=1,6

2.4 Расчет устойчивости откосов

Расчет был произведен с помощью программа UST.

1. Основные характеристики программы UST

Программа UST предназначена для нахождения коэффициента запаса откосов по КЦПС. Большим преимуществом UST по сравнению с другими подобными программами является то, что она требует малого времени машинного счета, что обеспечивает возможность эффективно увеличить количество граничных линий для различных грунтов и вариантов кругов скольжения. Эта программа, в частности, полезна для тех, кто имеет небольшой опыт в расчетах устойчивости. С ее помощью может быть исследована большая зона и получен минимальный коэффициент запаса. Основные особенности этой программы формулируются следующим образом:

1. Могут рассматриваться откосы любой конфигурации при наличии большого числа различных слоев грунта (до 25).

2. Фильтрация может быть учтена как введением пьезометрической поверхности, так и коэффициентом порового давления. Можно одновременно рассматривать несколько различных случаев фильтрации.

3. Могут быть вычислены коэффициенты запаса как статической, так и сейсмической устойчивости откосов.

4. Число точек описывающих геометрию области - до 125.

5. Число отсеков обрушения шириной "b" - до 200.

6. Максимальное число центров вращения - до 400.

7. Допускается большая гибкость при назначении радиусов. Для проверяемых зон можно устанавливать один или большее число радиусов и указывать количество кругов для каждой зоны.

8. Могут быть вычислены коэффициенты запаса для ряда отдельных центров или их групп, которые образуют сетку. Путем выбора одного или большего числа вероятных центров может быть задействована процедура поиска для локализации минимального коэффициента запаса.

Расчет по методу Терцаги-ВНИИГ в программе UST

Этот метод применяется для расчета статической и сейсмической устойчивости откосов всех грунтовых сооружений и плотин. При этом расчетная область делится на элементарные отсеки шириной "b" (рис.5.49).

Рис. 2. Cхема к определению коэффициента запаса устойчивости откоса по кругло-цилиндрической поверхности скольжения: 1 - поле центров кругов скольжения; 2 - круги, проведенные с шагом ∆R; 3 - круги, касательные к слоям; 4 - ось элементарных отсеков (столбиков); 5 - нижняя граница расчетной области (поверхность грунта)

Намечаются, согласно приведенным ниже указаниям, центры окружностей скольжения, и из каждого центра проводится серия возможных окружностей скольжения. Для каждой окружности скольжения определяется коэффициент статической устойчивости по формуле Терцаги - ВНИИГ:

 (1)

где  - масса грунта в отдельном отсеке с учетом водонасыщения;

 - величина полного давления поровой воды (т/м2), равная пьезометрическому напору (м), умноженному на плотность воды  (т/м3);

 - ширина элементарного отсека (м);

 - коэффициент трения;  - расчетное сцепление грунта (т/м2);

 - угол (в градусах) между вертикалью и радиусом, проведенным из центра вращения в точку пересечения оси отсека с окружностью скольжения;

 - плотность водонасыщенного грунта (ниже уровня воды) или грунта природной влажности (выше уровня воды) в т/м³;

 - высота отсека, занятая грунтом или водой (м).

В расчете суммирование производится по всей длине кривой скольжения до пересечения ее с поверхностью грунта в правой и левой частях плотины. Расчет можно выполнить при двух вариантах определения давления в поровой воде . В первом основном случае величина  определяют как вертикальное расстояние от любой точки поверхности скольжения до депрессионной кривой (рис.3)

Рис.3. Схема определения давления в поровой воде грунта основания и плотины в расчете устойчивости откосов; учет давления воды ВБ и НБ

Во втором случае величину  задают в узлах прямоугольной сетки, что позволяет учитывать влияние на устойчивость откоса ряда факторов, изменяющих картину распределения пьезометрических напоров в плотине и ее основании. Варьируя величинами полного давления воды  и сопротивления сдвигу, определяют величину  для всех расчетных случаев.

Перед расчетом составляется схема расчетной области в прямоугольных координатах. Начало координатных осей в первом приближении можно определить следующим образом. За нулевую отметку (ось абсцисс) принимается самая нижняя точка поверхности более прочного грунта. Если такой поверхности нет, то нулевая отметка выбирается на глубине одной - двух высот плотины от поверхности основания.

Центры кривых скольжения располагают в пределах поля центров окружностей скольжения. Далее откорректируют границы поля центов окружностей скольжения так, чтобы рассматриваемые поверхности скольжения покрывали все участки откоса, как это делалось на рис.5.49 для того, чтобы сместить поле центров окружностей скольжения или увеличить его достаточно изменить координаты поля центров вращения.

Поле центров окружностей скольжения разбивается сеткой с шагом  и . Опыт показал, что величины  и  можно принять равными , где  - абсцисса точки на поверхности сооружения. Из каждой точки сетки проводится серия окружностей скольжения разного радиуса. Одни из них являются касательными (см. рис.2) к границам слоев основания, что дает возможность учесть влияние слабого слоя на устойчивость, радиусы других окружностей меняются от максимального до минимального с шагом , который может быть произвольным. При этом для каждой точки сетки - это радиус окружности касательной к нижней границе расчетной области, для каждой точки сетки - это радиус окружности, примерно равный длине перпендикуляра из рассматриваемого центра на грань откоса плюс , не рассматриваются поверхности, содержащие 4 и менее отсеков и поверхности, в которых максимальное заглубление менее 1,6 м.


Информация о работе «Головной гидроузел с каменно-земляной плотиной и водосбросным сооружением»
Раздел: Геология
Количество знаков с пробелами: 99056
Количество таблиц: 16
Количество изображений: 20

Похожие работы

Скачать
193255
15
1

... , чрезвычайные ситуации на которых могут привести к большим человеческим жертвам и значительному материальному ущербу. 2.  Для расчета последствий чрезвычайных ситуаций на гидротехнических сооружениях Павловской ГЭС, проведена оценка состояния сооружений и рассмотрено местоположение данного объекта. Показано, что некоторые сооружения Павловского гидроузла находятся в изношенном состоянии, ...

Скачать
43932
3
0

... гидротехнических сооружений: - обеспечение безопасного забора воды из источника водоснабжения, наблюдение и уход за гидротехническими сооружениями и обеспечение их сохранности (от воздействий льда, воды, деформаций грунта и пр.); - Ремонт, восстановление, реконструкция гидротехнических сооружений; - борьба с потерями воды в прудах и каналах; - разработка и осуществление мероприятий по пропуску

Скачать
129772
36
15

... ; Защита личного состава формирований Ее организуют, чтобы не допустить поражения (травмирования) людей при ликвидации последствий затопления после прорыва плотины водохранилища и обеспечить выполнение поставленных задач. В основном задача решается путем соблюдения мер безопасности в ходе спасательных, восстановительных и других неотложных работ. Основными из них являются: разведка, инженерное ...

0 комментариев


Наверх