Реферат

Жизненный цикл гидротермальных систем


1. Введение

В этом разделе описаны типичные изменения, которые может пройти гидротермальная система в течение одного цикла, и рассмотрены возможные пути их исторического развития. Этот процесс имеет не только теоретическое значение. Материал базируется на наблюдениях реальных систем, часть которых связана с известными промышленными месторождениями. Так, например, на месторождении Крид в штате Колорадо в США, были выполнены детальные исследования по флюидным включениям, а «стратиграфия» была изучена по окраске полос обильно присутствующего в жилах сфалерита. Она позволила установить воздействие на систему контролирующего временного фактора (рис. 6.1). На этом месторождении можно распознать двадцать различных этапов отложения сфалерита. Эти данные показали процесс уменьшения минерализации и температуры во времени, в связи с чем можно высказать предположение о постепенном разбавлении и остывании первичных магматических флюидов. Они также свидетельствуют о двух циклах обновления гидротермальной системы, которые сопровождались несколькими более мелкими флуктуациями в режиме гидротермальных растворов.


2. Единый цикл

Факторы, которые в пределах одного жизненного цикла гидротермальной системы, влияют на эволюционные изменения следующие:

- физические изменения в результате остывания;

- химическая эволюция вследствие изменений первичных флюидов;

- химическая эволюция вследствие изменений вторичных гидротерм;

- эрозия.

Эти факторы определяют все процессы в гидротермальной системе, но их удобнее рассматривать во времени по отдельности.

2.1 Остывание плутонов

Простейшая модель гидротермальной системы представляет собой систему, наведённую тепловым полем внедрившегося плутона, который, взаимодействуя с подземными водами, начинает остывать. Формируется конвективный теплообмен, в результате чего плутон остывает быстрее. Со временем происходит тепловое дробление плутона, в связи с чем, вода может проникать в плутон, извлекая тепло и выщелачивая минералы (рис. 6.2)


По-видимому, эта модель является слишком упрощенной для любой реальной системы. Но даже для этой простой модели математическое моделирование процесса остывания показывает, что любая точка в пределах окружающих вмещающих пород может подвергаться полному комплексу термических и химических событий, обусловленных физическими свойствами воды при разных температурах, кипения и физических эффектов, сопровождающих внедрения подземных вод в плутон. Это не простой процесс подъёма температуры до пикового значения и последующего её уменьшения (рис.3), поскольку происходит изменение проницаемости со временем по мере расширения зоны дробления, сопровождаемое усилением конвекции.

Факторы, такие как, экзотермическая природа химических реакций во время гидротермальных изменений, будут усложнять картину. Отмечается, что диаграммы, приведённые выше, основаны на некоторых ранних работах Cathles, которые недавно были усовершенствованы (Cathles, Erendi, 1997), но выводы остались прежними.


2.2 Изменения первичных гидротерм

Плутон будет частично твёрдым и жидким, если он размещается впервые. По мере постепенной кристаллизации большая часть магматических летучих компонентов будет концентрироваться в остающейся жидкости. Поскольку мы обсуждаем случай с порфировой рудной минерализацией, то эти магматические летучие компоненты характеризуются высокой мобильностью и реактивной способностью (агрессивностью). Они будут попадать в конвективный гидротермальный раствор с той или иной скоростью. Со временем магматических летучих в магме становится меньше и их доля повысится в подземных водах. Таким образом, гидротермальная система на малых глубинах эволюционирует от более кислой системы - типа хай сульфидейшн в менее кислую систему - типа лоу сульфидейшн.

В более локальном масштабе, учитывается обычный псевдоморфизм пластинчатого кальцита в кварце эпитермальных жил. Это происходит как следствие относительной растворимости постепенно остывающих гидротерм. Если гидротермы, отлагающие кальцит, остывают, то он становится более растворимым и растворяется тогда, как кварц менее растворим. Таким образом, это является нормальным эволюционным событием, но этот факт не подразумевает наличие двух следующих одних за другими гидротерм разных составов. Там, где присутствует пластинчатый кальцит, это служит признаком того, что имело место резкое прекращение поступления гидротерм.

2.3 Изменения, связанные с вторичными гидротермами

Обычная последовательность характерных событий совершается при аккумуляции геотермальных газов и их окислении, в результате которой формируется зона кислых сульфатных и/или бикарбонатных гидротерм над или вокруг границ гидротермальных систем. Поскольку источник тепла иссякает, то конвекция будет уменьшаться, градиент давлений может стать обратным, что приводит к возвращению назад гидротерм в систему. Иногда этот процесс называется «термальным обрушением» системы.

В ископаемых системах эти места часто могут быть идентифицированы в виде кислотно-карбонатных наложений поздней стадии на гидротермальные изменения, возможно с образованием каолинит-карбонатных минеральных комплексов. Важность изменения рН для отложения золота означает, что этот процесс может быть связанным с рудной минерализацией. Если система обновляется, то процесс может неоднократно повторяться.

2.4 Эрозия

Степень эрозии во время жизнедеятельности гидротермальной системы может быть значительной, особенно в островодужных структурах. Тектонизм, оказывающий влияние на вулканическую деятельность, также может усилить или уменьшить эти эффекты. Но, обычно, влияние будет проявляться в сдвиге изотерм во времени, что касается пород и в типе процесса конвейер-поясов(?). Это вновь будет приводить к наложению зон гидротермальных изменений, очевидно ретроградного вида, поскольку температура на поверхности не может превышать 100°С в стабильной ситуации. Примеры разнообразия систем с небольшой эрозией и наложениями и систем с интенсивной эрозией и наложениями приведены Sillitoe (1994a) (рис.6 4).



Информация о работе «Жизненный цикл гидротермальных систем»
Раздел: Геология
Количество знаков с пробелами: 11983
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
40799
0
0

... что все события происходили в геологическом масштабе времени. Относительно простой, примитивный организм не мог возникнуть мгновенно даже после того, как на первобытной Земле были созданы условия, благоприятные для зарождения жизни. Протеиноиды – термические белки. Образуются при самопроизвольном синтезе аминокислотных цепей. Длина и состав протеиноидов зависит от состава исходной аминокислоты, ...

Скачать
134422
1
0

... на: • аэростатические - штиль (скорость ветра V = 0 м/с), • слабодинамические (V < 1 м/с), • среднединамические (V = 1-4 м/с), •сильнодинамически,е (V > 4 м/с), При скорости ветра более 7 м/с не рекомендуется проведение рекреационных занятий.   Термический режим Термический режим характеризуется продолжительностью периодов: безморозного; благоприятного для летней рекреации; ...

Скачать
236598
0
6

... , 2004. 4.              Морган Н., Причард А. Реклама в туризме и отдыхе: Пер. с англ. – М., ЮНИТИ, 2004. 5.              Морозова Н.С., Морозов М.А. Реклама в социально-культурном сервисе и туризме. – М., 2003. 6.              Пономарева А.М. Рекламная деятельность: организация, планирование, оценка эффективности. – М., ИКЦ «МарТ», 2004. Управление персоналом в туристской деятельности (7) ...

Скачать
42079
0
18

... и другими наноструктурными материалами показали, что их применение может увеличить эффективность и таких батарей. Не вдаваясь в детали, можно сказать, что нанотехнологии в будущем сыграют значительную роль в разработке высокоэффективных типов солнечных батарей, требующихся для создания жизнеспособной альтернативы добыче водорода при помощи ископаемых энергоносителей. Проблема хранения водорода ...

0 комментариев


Наверх