1.3 Температура магм
Измеренные температуры лавовых потоков, в большинстве случаев, составляют от 900 до 1100ºС. Это, в основном, относится к лавам с базальтовым и андезитовым составом. Наиболее высокие значения получены для базальтовых лав. Температура сильно закристаллизованной «роговообманковоандезитовой» лавы, изверженной из вулкана Сантиагуита в Гватемале, равна 725ºС. Наиболее высокие температуры (1150 и 1350ºС) были определены для насыщенных газом лав из газирующих куполов Гавайских островов. Внутри Земли магма, несомненно, сохраняется, по крайней мере, частично, в жидком состоянии при температурах гораздо более низких, чем температуры лав, текущих на поверхности. Зеленая роговая обманка и биотит – обычные минералы в богатых кремнеземом изверженных породах. Их структурные отношения с ассоциирующими минералами и стеклом показывают, что они кристаллизовались тогда, когда магма была еще жидкой. На воздухе зеленые роговые обманки при 750ºС превращаются в бурые окисленные роговые обманки; кроме того, некоторые магматические биотиты разлагаются при 850ºС. Мусковит, как минерал, присущий многим гранитам, не может кристаллизоваться при температурах, намного превышающих 700ºС, даже при давлении воды в несколько тысяч бар. Экспериментальные исследования кристаллизации водосодержащих полевошпатовых расплавов показали, что расплавы, приближающиеся по составу к граниту, могут существовать при давлениях воды, сравнимых с глубинными, и при температурах ниже 700ºС.
На основании экспериментальных данных и учитывая законы термодинамики, можно сделать вывод, что внутри земной коры температура базальтовой магмы обычно ниже 1000ºС (вероятно, 800–900ºС), а температура наиболее богатых кремнекислотой магм – 600–700ºС. Наиболее вероятный интервал внутрикоровых магматических температур лежит в интервале 700–1100ºС. Низкие температуры в этой области относятся к насыщенным водой гранитным магмам, более высокие – к пироксенандезитовым и базальтовым магмам.
1.4 Процесс охлаждения магмы
Магма, охлаждаясь в определенном интервале температур, подвергается действию физических и химических реакций, которые согласно принципу Лешателье должны быть экзотермическими (например, конденсация газа, кристаллизация из жидкости, химические реакции с выделением тепла).
Если магму рассматривать как закрытую систему, то есть если обмен материей между магмой и ее окружением отсутствует, то можно ожидать, что магмы различного состава могут несколько отличаться последовательностью кристаллизации, даже если физические условия тождественны. Одна и та же магма в различных физических условиях должна вести себя по-разному. Последовательность явлений, происходящих в магме, охлаждающейся под постоянным внешним давлением, иная, чем в магме, охлаждающейся при постоянном объеме.
Совершенно очевидно, что в большинстве случаев магма является открытой системой со многими переменными. Поэтому, не зная достаточно хорошо физических условий, господствующих в магме, нельзя предсказать ее поведение. Единственными достоверными данными о свойствах и поведении магмы являются сведения, которые дают химические, минералогические и структурные исследования пород при условии, что они будут точно интерпретированы.
Как бы ни было трудно судить о поведении магмы, все же можно установить различие между магмой, охлаждающейся на больших глубинах и магмой лавовых потоков, охлаждающейся на дневной поверхности. Эта разница обусловлена изменениями в равновесии, зависящими от разницы давлений в этих условиях и различиями в механизме охлаждения. На поверхности охлаждение идет сравнительно быстро, в результате чего кристаллизация может и не осуществиться, так как магма, затвердевая, перейдет в стеклообразное метастабильное состояние. Там же, где произойдет кристаллизация, некоторые реакции могут протекать не полностью. Оливин, например, только частично может превратиться в пироксен – минеральную фазу, устойчивую при более низкой температуре в присутствии избытка кремнезема.
Скорость охлаждения зависит не только от глубины, но также от размера и формы интрузивного тела. Малые тела со сравнительно большой поверхностью при данном объеме охлаждаются гораздо быстрее, чем крупные тела почти сферической формы. Фактически скорость охлаждения, по-видимому, почти всегда одна и та же независимо от того, охлаждается тело на глубине 100 или 1000 м. Типичные признаки быстро охлажденных масс можно найти в тонких пластинчатых телах, внедренных на значительной глубине, но они могут отсутствовать в мощных телах, внедрившихся в поверхностные толщи.
Большая разница между магмой, охлаждающейся на больших глубинах, находится в соответствии со свойствами летучих компонентов, главным образом воды. Растворимость воды в силикатных расплавах, по-видимому, в некоторых пределах возрастает с повышением давления, так как молекулярный объем водяного пара значительно больше при низком давлении, чем парциальный молекулярный объем воды в расплаве. Магмы, достигающие поверхности, могут вследствие этого потерять большую часть своих летучих компонентов.
Летучие компоненты играют весьма важную роль в двух смыслах. Во-первых, они имеют сравнительно низкие молекулярные веса, а их молекулярные доли в расплаве велики по сравнению с их концентрацией в весовых процентах. Например, молярная доля воды в шести процентном растворе воды в альбите составляет почти половину. Вследствие этого малые количества воды заметно изменяют химические потенциалы других компонентов в расплаве, вызывая значительное понижение точек плавления разных составляющих магму силикатов. Во-вторых, такие компоненты, как H2O, F, Cl значительно понижают вязкость силикатных расплавов. Этот факт объясняется разрывом кислородных мостиков Si-O-Si, когда O замещается (OH) или F.
Быстрое снятие давления эквивалентно в отношении кристаллизации быстрому охлаждению.
Вязкость расплава хорошо иллюстрирует зависимость физических свойств магмы от состава и параметров окружающей среды. Вязкость силикатных расплавов очень быстро уменьшается с повышением температуры. Она, вероятно, возрастает с понижением давления при постоянной температуре. Вязкость также сильно зависит от содержания кремнезема в расплаве. Она значительно выше для богатых, чем для бедных кремнеземом магм. Кроме того, на вязкость, как уже отмечалось, влияет присутствие летучих компонентов, хотя экспериментально эта величина не определена. Следовательно, предсказать вязкость природной магмы невозможно. Резкие местные изменения вязкости иногда наблюдаются в кажущихся однородными лавах, излившихся одновременно из одних и тех же вулканов.
0 комментариев