3. ПОРОДЫ ГРУППЫ НЕФЕЛИНОВЫХ СИЕНИТОВ – ФОНОЛИТОВ

В этой группе преобладающими являются интузивные породы и им принадлежит наибольшее разнообразие структур [1, с. 340]. Собственно говоря, разнообразие свойственно не структуре пород в целом, а деталям структур, что объясняется значительным развитием метасоматических преобразований, свойственных щелочным породам.

Чаще всего встречается гипидиоморфизернистая структура, проявляющаяся здесь в собой разновидности, которую называют агпаитовой. Характерное отличие ее состоит в большем идиоморфизме бесцветных минералов – нефелина и щелочного полевого шпата – по отношению к цветным минералам.

Нередко нефелин является наложенным, и такие породы следует называть нефелинизированными.

Очень большое значение для структур нефелиновых сиенитов имеют соотношение нефелина и щелочного полевого шпата; наблюдается больший идиоморфизм то нефелина, то калишпата, а также очень тесные и причудливые взаимные прорастания обоих минералов с образованием дактилоскопических структур, обычно рассматриваемых авторами как структуры замещения[1, с. 340].

Калиевый полевой шпат представлен различными разновидностями – ортоклазом и анортоклазом, решетчатым и нерешетчатым микролином, в породах Хибин – нередко микроклин – изопертитом.

Очень большую роль в некоторых нефелитовых сиенитах играет альбит. Особенно характерны в этом отношении мариуполиты Приазовья; изучение их в шлифах показывает постепенное замещение альбитом нефелина, с превращением крупнозернистого уртита в мелкозернистый мариуполит. Альбит замещает и цветные минералы, например, биотит.

Нефелиновые сиениты и родственные им уртиты характеризуется высоким содержанием акцессорных минералов, которые по своему количеству могут занимать место породообразующих минералов и влиять на характер структуры пород, нередко образуя фенокристалы. Таковы, например, апатит и сфен в нефелиновых сиенитах и уртитах Хибин, циркон в мариуполитах. Интесивное метасоматическое развитие крупных идиопластов эвдиалита в луяврите создает особую породу – эвдиалитит с криптобластовой структурой.

Уртиты обладают также гипидиоморфиозернистыми структурами с развитием наложенных метасоматических преобразований в виде карбонатизации, эвдиалитизации с проявлением графических структур замещения, например эгрина нефелином, нефелина калишпатом, а также рекреационных структур.

Текстура нефелиновых сиенитов – фонолинов и уртитов гранитоидная, то есть массивная или трахитоидная, с параллельным расположением таблитчатых полевых шпатов. Наблюдаются полосчатая текстура, например у миаскитов, гнейсовидная, или очковополосчатая, урисчорритов, параллельно – линзовая у нефелин апатитовой породы Хибин, а также пегматоидная с участками расходяще – лучистой текстуры. Часты также и «солнца» - эгириновые, турмалиновые.

Особую подгруппу составляют псевдолейцитовые сиениты, характеризующиеся наличием псевдолейцита, показывающего под микроскопом дактилоскопическую структуру.

Нередко псевдолейцитовые образования являются очень крупными ( до 4 см в длину) и имеющими очень сложную зональную структуру. Они играют роль фенокристаллов; структура таких пород имеет характер порфировидной с поликристаллической гипидиоморфиозернистой основной массой.

4. ГРАНУЛИТОВАЯ И ЭКЛОГИТОВАЯ ФАЦИЯ РЕГИОНАЛЬНОГО МЕТАМОРФИЗМА; УСЛОВИЯ ОБРАЗОВАНИЯ, РАСПРОСТРАНЕНИЕ, ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ

Под метаморфизмом понимают изменение и преобразование горных пород под влиянием различных эндогенных геологических процессов, вызывающих значительные изменения термодинамических условий (прежде всего температуры и давления) [8, с. 20].

Все преобразования в горных породах при процессах метаморфизма происходят путем их перекристаллизации в твердом состоянии. Метаморфизму могут подвергаться горные породы любого происхождения - осадочные, магматические и ранее существовавшие метаморфические.

Степень изменения первичных горных пород (степень метаморфизма) может быть самой различной - от незначительных преобразований до полного изменения состава и облика пород [8, с. 20].

По преобладающей роли в процессе тех или иных факторов, а также в зависимости от масштабов явлений метаморфизма в пространстве выделяют отдельные виды, или типы метаморфизма. Основными типами метаморфизма являются региональный, контактовый и динамометаморфизм.

Региональный метаморфизм является наиболее распространенным и важным видом метаморфизма, поскольку охватывает огромные площади или целые регионы [8, с. 21].

Он проявляется в условиях, когда отдельные участки земной коры испытывают длительное прогрессивное погружение, в результате чегогорные породы перемещаются из верхних горизонтов земной коры в более глубокие. Обычно прогибание компенсируется осадконаполнением и в качестве главных факторов регионального метаморфизма, таким образом, выступает петростатическое давление и температура, постепенное повышение которой обусловлено геотермическим градиентом; существенную роль также может играть односторонне боковое давление и химически активные вещества.

В глубинных зонах земной коры может проявляться особая стадия регионального метаморфизма, называемая ультраметаморфизмом. Расплавы, возникающие при ультраметаморфизме и имеющие обычно гранитный состав, проникают во вмещающие породы, пронизывают их, образуя своеобразные породы смешанного состава - мигматиты. Широко развиты мигматиты в пределах древних щитов - Балтийского, Украинского, Алданского.

В настоящее время, говоря о зонах метаморфизма, имеют в виду всю совокупность физико - химических условий, создающихся на той или иной глубине. В соответствии с этим большинство исследователей для характеристики процессов метаморфизма и классификации метаморфических пород пользуются понятием о метаморфических фациях.

Принцип метаморфических фаций был предложен ученым П. Эскола (1915, 1920), сформулировавшим его следующим образом – в любой фации метаморфизма, породы которой находятся в химическом равновесии и достигли одинаковых условий температуры и давления, минеральный состав каждой из этих пород определяется только общим химическим составом.

Отсюда следует, что минеральный состав метаморфических пород является функцией их химического состава и физических условий мета- морфизма. При разных термодинамических условиях из пород одного и того же химического состава образуются породы, характеризующиеся разными минеральными ассоциациями.

Под метаморфической фацией понимается группа пород разного состава, образовавшихся в сходных термодинамических условиях. В качестве показателей этих условий используют так называемые индекс - минералы, устойчивые в строго определенных условиях температуры и давления.

Зависимость фаций от основых показателей и примеры пород приведены в таблице 1 [1].

Таблица 1. Фации регионального метаморфизма

Тип метаморфизма Фации метаморфизма Давление (МПа) Температурный интервал (°C) Примеры пород
Регинальный метаморфизм Зелёных сланцев 200—900 300—600 Зелёные сланцы, хлорит-серицитовые сланцы
Эпидот-амфиболитовая 500—650 Амфиболиты, слюдяные сланцы
Амфиболитовая 550—800 Амфиболиты, биотитовые парагнейсы
Гранулитовая > (700—800) Гранулиты, гиперстеновые парагнейсы
Кианитовые сланцы > 900 500—700 Кианитовые сланцы
Эклогитовая Эклогиты

Таким образом, гранулитовая фация – фация соответствующая температуре метаморфизма – от 750–800 0С до 900–1000 0С, давление от 4–5 кбар до 12–13 кбар.

Сверху по температуре и давлению поле фации ограничено линией плавления базальта, устойчивости альмандина и доломита. Субфации не выделяются.

Эклогитовая фация – фация соответствующая температуре метаморфизма, которая изменяется от 850 0С до 1000 0С, а давление превышает 14 кбар.

Нижний температурный предел фации фиксируется наличием граната с содержанием пиропового минала не менее 50 %.

5. АГПАИТОВЫЙ ПОРЯДОК КРИСТАЛЛИЗАЦИИ МАГМАТИЧЕСКИХ ГОРНЫХ ПОРОД

Магматические горные породы образуются в результате затвердевания магм, которые выходят в нижнюю часть земной коры или в верхнюю мантию [3, с. 93].

При подъёме вверх во время геотектонических процессов, магмы теряют температуру и затвердевают. При затвердевании до выхода их на поверхность земли, образуются породы, которые получили название интрузивных, или плутонических.

Горные породы, образовавшиеся на большой глубине более 2 км, называются также абиссальными, или глубинными. Магмы достигшие земной поверхности в жидком состоянии и излившиеся из вулканов, образуют эффузивные, или вулканические, горные породы. Они называются также излившимися породами.

Агпаитовый порядок кристаллизации магматических горных пород – это особый ход кристаллизации магматического раплава, когда лейкократовые минералы (полевые шпаты, фельдшпатиды) выделяются раньше меланократовых (метасиликатов, слюд).

Агпаитовый порядок кристаллизации часто наблюдается в щелочных горных породах.

Породы агпаитового ряда образуются, если Na2O + K2O больше или равно Al2O3, если меньше Al2O3, – миаскитового с невысоким содержанием химических элементов.

По Л. Н. Когарко, с появлением щелочного магматизма на границе архея – протерозоя связывают резкую смену геодинамического режима Земли. Происходит субдукция окисленной океанической коры, содержащей повышенные концентрации летучих компонентов. Появление окисленной флюидной фазы способствует началу крупномасштабных метасоматических процессов и генезису щелочных магм, обогащенных рудными литофильными элементами.

Крупнейший в мире щелочной массив находится в Хибинах, меньшие его площади встречаются на Урале, в Восточной Сибири, Гренландии, Южной и Восточной Африке и других регионах.

В щелочной магме содержание Na и K достигает 15 %, в базальтах 5–7 %. Количество SiO2 понижено, могут отсутствовать кварц, полевые шпаты, основные породы нефелинового ряда.

По содержанию SiO2 одни щелочные породы относятся к ультраосновным, другие – к основным и средним. В них могут концентрироваться Li, Rb, Сs, Сa, Sr, Ti, Zr, Hf, Th,. Nb, Ta, U, Ga, Tl, P, F, Cl.

В некоторых видах щелочной магмы господствует окислительная или восстановительная обстановка.

Амфотерные элементы образуют комплексные анионы с большим радиусом и пониженной энергией кристаллической решетки, поэтому кристаллизация начинается с бесцветных минералов и заканчивается цветными, что противоположно порядку кристаллизации других магм. В щелочных магмах высокая концентрация летучих F, Cl, CO2, S, P и др., а также большое разнообразие минералов (в Ловозерском массиве около 300). Главные минералы – нефелин, пироксен, апатит, полевые шпаты – содержат изоморфные редкие элементы (Sr, РЗЭ, Rb, Cs, Gа, Nb, Ta).

Щелочные породы относятся к полигенетическим.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1.  Ананьев, В. П., Потапов, А. Д. Основы геологии, минералогии и петрографии: Учебник для вузов/В. П. Ананьев, А. Д. Потапов.- М.: Издательство «Высшая школа», 2008.- 400с.

2.  Емельяненко, П. Ф., Яковлева, Е. Б. Петрография магматических и метаморфических пород/П. Ф. Емельяненко, Е. Б. Яковлева.- М.: Издательство МГУ, 1985.- 487с.

3.  Карлович, И. А. Геология: 3-е изд. перераб. и доп. – М.: Трикста; Академический проект, 2005.- 703с.

4.  Короновский, Н. В., Общая геология: Учебник/ Н. В. Короновский.- М.: КДУ, 2006.- 528с.

5.  Маркушев, А. А., Бобров, А. Б. Метаморфическая петрология: Учебник/А. А. Маркушев, А. Б. Бобров.- М.: Издательство МГУ, 2005.- 256с.

6.  Основы минералогии, кристаллографии и петрографии [Текст]/Н. А. Платов [и др.].- М.: МГСУ, 2007.- 158с.

7.  Полянин, В. С. Структурная геология и геологическое картирование/В. С. Полянин – Казань: Издательство Казанского государственного университета, 2009.- 56с.

8.  Сизых, А. И., Юденко, М. А. Петрография метаморфических пород: Учебное пособие.- Иркутск: Издательство Иркутского университета,2007.- 123с.


Информация о работе «Особенности олифолитовой и магматической формаций»
Раздел: Геология
Количество знаков с пробелами: 23408
Количество таблиц: 1
Количество изображений: 0

0 комментариев


Наверх