2.3 Выбор способа бурения
Основные требования к выбору способа вращения долота определяются необходимостью обеспечения успешной работы, проводки ствола скважины с высокими технико-экономическими показателями.
Выбор способа бурения зависит от технической оснащенности предприятия (парк буровых установок, буровых труб, забойных двигателей и т.п.), опыта бурения в данном районе.
Для бурения данной скважины выбираем бурение с помощью гидравлических забойных двигателей. Турбинный способ обладает рядом преимуществ по сравнению с роторным способом бурения:
· механическая скорость выше, чем при роторном способе бурения;
· облегчает отклонение ствола в требуемом направлении;
· можно использовать все виды промывочной жидкости за исключением аэрированной;
· возможность применения в колонне бурильных труб легкосплавных и тонкостенных стальных труб;
· улучшаются условия работы, отсутствуют шум и вибрация.
2.4 Расчет бурильной колонныИсходные данные:
· скважина вертикальная;
· глубина бурения 1300 м;
· способ бурения – турбинный;
· диаметр долота Dд = 215,9 мм;
· нагрузка на долото G = 170 кН;
· плотность бурового раствора r = 1100 кг/м3;
· турбобур 3ТСШ1-195;
Расчет УБТ:
Dубт = (0,75¸0,85)* Dд;
Dубт = 0,8*215,9 = 172,7 мм.
Выбираем УБТ диаметром Dубт = 178 мм.
Затем найдем диаметр СБТ для Dубт = 178 мм.
Dсбт = 0,75*215,9 = 175,5 мм.
Выбираем предварительно тип СБТ-ТДПВ 127х9, трубы группы прочности «Д» – бурильные трубы с приварными замками диаметром 127 мм, толщиной стенки трубы 9 мм.
Найдем длину УБТ для бурения забойным двигателем:
где Gд – нагрузка на долото при бурении забойными двигателями;
b – коэффициент облегчения трубы в промывочной жидкости;
q0 – вес УБТ диаметром 178 мм, q0 = 156 кг;
Gзд – вес забойного двигателя, Gзд = 4790 кг;
РкрIII – критическая нагрузка третьего порядка.
где rп – плотность промывочной жидкости, rп = 1100 кг/м3,
r0 – плотность материала труб, r0 = 7800 кг/м3;
где lкр – критическая длина УБТ;
Примем lубт = 132 м, т.е. 5 свечей длинной по 24 метра и 1 секция УБТ, длинной 12 м.
Определим вес УБТ:
Определим длину СБТ:
где q0 – вес 1 м СБТ диаметром 127 мм, q0 = 262 н/м;
Gсбт – полный вес СБТ;
Длина свечи 24 м, поэтому примем количество свечей равное 30, а длина стальных труб 720 м.
Найдем длину ЛБТ:
где L – глубина скважины по стволу Lсбт = 1300 м;
Lсбт – длина СБТ = 720 м;
Lубт – длина УБТ = 132 м;
Lэд – длина ЗД = 26 м;
Произведем расчет растягивающих напряжений при подъеме бурильной колонны.
Разобьем колонну на характерные участки, т.е. отметим точки перехода одного вида труб в другой, переход УБТ в турбобур.
Профиль скважины имеет 3 характерные точки. Данные занесем в таблицу 2.6.
Таблица 2.6
Результаты разбивки бурильной колонны на участки.
Участок | l, м | q, н/м |
1 | 2 | 3 |
0 – 1 | 26 | 184,2 |
1 – 2 | 132 | 613,6 |
2 – 3 | 720 | 179,9 |
Расчет напряжений в колонне ведем по методу Сушона, основываясь на том, что в конце колонны усилия Тн = 0.
где Тв – нагрузка в верхней части колонны;
Тн – нагрузка в нижней части колонны;
– средней зенитный угол;
– изменение среднего угла на участке;
l – длина участка;
q – вес 1 метра трубы на участке длины l;
в – коэффициент облегчения в промывочной жидкости бурильной колонны, в = 0,86;
f – коэффициент сопротивления движения бурильной колонны о стенки cскважины, f = 0,3;
Участок 0 – 1:
Участок 1 – 2:
Участок 2 – 3:
Определим растягивающие напряжение:
где Sк – площадь канала внутри трубы;
Sт – площадь сечения трубы, м2;
где dвн – внутренний диаметр ЛБТ равный 125 мм;
где D – наружный диаметр трубы;
ур для третьего участка:
ур для второго участка:
Определим результирующие напряжение для второго и третьего участков по следующей формуле:
где урез – результирующее напряжение, Мпа;
ур – растягивающее напряжение, Мпа;
уи – изгибающие напряжение, Мпа;
Изгибающие напряжение в нашем случае равно нулю т.к. сквжина вертикальная.
где [nр], nр – допустимый и фактический коэффициенты запаса прочности, [nр] = 1,45;
ут – предел текучести материала труб, ут = 300 Мпа;
Проверим сечение третьего участка на прочность:
ЛБТ 147х11 удовлетворяют прочности.
Проведем расчет на прочность ЛБТ 147х11 в клиновом захвате:
Т3 = 330 кН при f = 0;
Для ЛБТ 147х11, Тдоп =1180 кН;
Т3 = 330 кН < [Т] = 1180 кН; – Условие прочности в клиновом захвате выполняется.
Сведем все результаты расчетов в таблицу 2.7.
Таблица 2.7
Результаты расчетов
№ участка | L, м | Т, кН | ур, МПа | урез, МПа |
I | 26 | 4,1 | - | - |
II | 132 | 73,8 | 77,7 | 77,7 |
III | 720 | 185,2 | 54,0 | 54,0 |
Правильно выбранная компоновка позволяет без осложнений, с наименьшими затратами пробурить скважину до проектной глубины.
Для разрушения горной породы применяем трехшарошечные долота. С целью создания осевой нагрузки на долото и для повышения жесткости бурильной колонны применяем УБТ. Для передачи вращения долоту используют турбобуры. Бурение под кондуктор ведется ротором.
Таблица 2.8
Компоновка бурильной колонны.
№№ | Элементы КНБК | ||||
Типоразмер, шифр | Наружный диаметр, мм | Длина, м | Масса, кг | Примечание | |
1 | 2 | 3 | 4 | 5 | 6 |
1 | Долото 259,3 мм | 295,3 | 0,42 | 72 | Бурение под кондуктор |
2 | Центратор | 295,3 | 0,57 | 115,7 | |
3 | Колибратор | 293,7 | 0,74 | 150 | |
4 | УБТ | 203 | 10 | 2232 | |
5 | ТБПВ | 127 | |||
1 | Долото 215,9 мм | 215,9 | 0,45 | 33 | Бурение под эксплуатационную колонну |
2 | ГДК | 178 | 0,4 | 65 | |
3 | 3ТСШ1-195 | 195 | 25,7 | 4790 | |
4 | УБТ | 178 | 132 | 870,5 | |
5 | ТБПВ | 127 | |||
6 | ЛБТ | 147 |
Исходные данные:
1) Глубина скважины по стволу – 1300м;
2) Тип долота – III-215,9 Т-ЦВ;
3) Конструкция низа бурильной колонны:
· долото III-215,9 Т-ЦВ;
· центратор Æ 215,9 мм;
· калибратор Æ 212,7 мм;
· турбобур 3ТСШ1-195;
· УБТ Æ 178 мм – 10 м;
· ТБПВ 127х9;
· ЛБТ 147х9;
4) Параметры промывочной жидкости:
· r = 1100 кг/м3;
· УВ = 25¸30 сек;
· ПФ = 5¸6 см3/30мин.
а) Выбор расхода промывочной жидкости:
– выбор расхода промывочной жидкости осуществляется исходя из условия удовлетворительной очистки забоя:
где q = 0,65 м/с – удельный расход;
Fз – площадь забоя;
где Dc – диаметр скважины;
где Dд – диаметр долота.
Интервал 0 – 550 м:
Dд = 259,3 мм;
Dс = 0,2953*1,05 = 0,310 м;
м2;
м3/с.
Интервал 550 – 1300 м:
Dд = 215,9 мм;
Dс = 0,2159*1,05 = 0,227 м;
м2;
м3/с.
– выбор расхода, исходя из условий выноса наиболее крупных частиц шлама:
где Uoc – скорость оседания крупных частиц шлама;
Fкп – площадь кольцевого пространства, м2;
где dш – средней диаметр крупных частиц шлама;
rп – плотность породы, кг/м3;
r - плотность промывочной жидкости, кг/м3;
dш =0,0035+0,0037*Dд;
где Dтр – диаметр турбобура, м.
Интервал 0 – 550 м:
dш =0,0035+0,0037*0,2953 = 0,0046 м;
0,37м/с;
м2;
м3/с.
Интервал 550 –1300 м:
dш =0,0035+0,0037*0,2159 = 0,0043 м;
0,39м/с;
м2;
м3/с.
– выбор расхода из условия нормальной работы турбобура:
где Муд – удельный момент на долоте;
G – вес турбобура;
Мс – момент турбобура при расходе Qc жидкости rс ;
r - плотность жидкости, при которой будет использоваться турбобур.
к – коэффициент учитывающий потери момента в осевой опоре турбобура равный 0,03;
Интервал 550 – 1300 м:
Параметры забойного двигателя 3ТСШ1-195:
G = 4790 кг; Мс = 1,5 кН*м; Qc = 0,03 м3/с; rс = 1000 кг/м3;
Муд = 6 Н*м/кН; r = 1100 кг/м3.
м3/с.
Из трех расходов Q1, Q2, Q3 выбираем максимальный расход: Q = 0,048 м3/с в интервале 0 – 550 м; Q = 0,026 м3/с в интервале 550 – 1300 м; и далее в расчетах будем принимать этот расход.
б) Определим перепады давлений во всех элементах циркуляционной системы:
Потери давления в ЛБТ:
Dлбт = 147 мм; t = 9 мм; lлбт = 428 м; r = 1100кг/м3;
- определим динамическое напряжение сдвига - t0:
t0 = 8,5*10-3*r-7 = 8,5*10-3*1100-7 = 2,35 Па;
- определим динамическую вязкость раствора - h;
h = (0,004¸0,005)* t0 = 0,005* 2,35 = 0,0118Па*с;
- определим скорость течения потока – U;
где Q = 0,026 м3/с – выбранный расход;
S – площадь рассматриваемого сечения;
м2;
1,2 м/с;
- определим число Ренольдса в ЛБТ (Re):
3159;
- определим коэффициент гидравлического сопротивления в ЛБТ (l):
0,027;
- потери давления в ЛБТ (DR):
0,07 Мпа;
Результаты расчетов S, U, Re, l, DR сводим в таблицу 2.9.
Потери давления в СБТ:
Dcбт = 127 мм; t = 9 мм; lcбт = 720 м; S = 9.3*10-3 м2; r = 1100кг/м3;
Динамическое напряжение сдвига – t0 и динамическая вязкость раствора – h, остаются без изменения. t0 =2,35 мПа; h = 0,0118 Па*с.
- определение скорости течения потока жидкости (U):
м/с;
- определим число Рейнольдса в СБТ (Re):
;
- определим l в СБТ:
;
- потери давления в СБТ (DR):
0,65МПа;
Потери давления в турбобуре 3ТСШ1-195:
Потеря давления в долоте
– Определим перепад давления в кольцевом пространстве между забойным двигателем и стенкой скважины, где Dc = 0,227 м; Dн = 0,195 м – наружный диаметр забойного двигателя; Lзд = 26 м. Методика расчетов аналогична. Результаты расчетов сводим в таблицу 2.8.
Перепад давления в кольцевом пространстве СБТ и УБТ считаются аналогично.
- Определим перепад давления в кольцевом пространстве между ЛБТ и кондуктором, где L = Lк = 550 м; Dc = Dвнк = 0,2267 м – внутренний диаметр кондуктора;
Остальные расчеты аналогичны и сводятся в таблицу 2.9.
- Определим перепад давления в замках ЛБТ по формуле:
где eр – коэффициент, используемый при расчете;
где Dвн = 0,129 м – внутренний диаметр ЛБТ 147х9;
dн = 0,110 м – внутренний диаметр ниппеля;
lт = 12 м – длина трубы ЛБТ;
Результаты заносим в таблицу 2.9.
- Определим потери давления в поверхностной обвязке буровой по формуле:
где а – коэффициент потери давления;
Определим потери давления в вертлюге, ведущей трубе, шланге, стояке, манифольде:
Суммарные потери в поверхностной обвязке буровой:
Общие потери равны:
Таблица 2.9
Расчеты результатов
Элементы циркуляционной системы | L, м | d, мм | D, мм | S, м2 | U, м/с | Re* | l | DR, МПа |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Манифольд | – | – | – | – | – | – | – | 0,1 |
Стояк | – | – | – | – | – | – | – | 0,03 |
Грязевый шланг | – | – | – | – | – | – | – | 0,02 |
Вертлюг | – | – | – | – | – | – | – | 0,03 |
Квадрат | – | – | – | – | – | – | – | 0,02 |
ЛБТ | 428 | 129 | 147 | 0,013 | 1,2 | 3159 | 0,027 | 0,07 |
СБТ | 720 | 109 | 127 | 0,009 | 2,7 | 6699 | 0,025 | 0,65 |
УБТ | 132 | 90 | 178 | 0,006 | 4,7 | 18247 | 0,022 | 0,41 |
Турбобур | 26 | – | – | – | – | – | – | 5,10 |
Долото | – | – | f = 2,87*10-4 м; mu = 0,94 | 6,06 | ||||
к.п. турбобура | 26 | 195 | 227 | 0,01 | 2,5 | 3653 | 0,026 | 0,1 |
к.п. УБТ | 139 | 178 | 227 | 0,015 | 1,7 | 6303 | 0,025 | 0,03 |
к.п. СБТ необсажен. | 585 | 127 | 227 | 0,027 | 0,9 | 1875 | 0,029 | 0,6 |
к.п. СБТ обсаженное | 122 | 127 | 227 | 0,027 | 0,9 | 1875 | 0,029 | 0,1 |
к.п. ЛБТ | 428 | 147 | 227 | 0,023 | 1,1 | 2773 | 0,028 | 0,05 |
DRкпзамки необсажен. | – | – | – | – | – | – | 0,001 | |
DRкпзамки обсажен. | – | – | – | – | – | – | 0,0001 | |
SDR | 13,39 |
Выбираем насос, исходя из суммарных потерь в циркуляционной системы. Выбираем из условия [P] > SDR, где [P] допускаемое рабочее давление насоса; SDR = 13,39 Мпа;
По таблице 56 [] выбираем буровой насос с [P] = 13,9 МПа при диаметре втулок dвт = 170 мм –У8-6МА.
Заключительной стадией гидравлического расчета скважины является построение НТС – номограммы.
Для этого занесем в таблицу теоретические и фактические подачи и давления насоса при различных диаметрах втулки.
Теоретические подачи и давления насоса берем из таблицы 56 [].
Фактическая подача определяется по формуле:
где к – коэффициент, учитывающий работу насоса на всасывании (к = 0,85);
Q – теоретическая подача.
Таблица 2.10
Давления и подачи У8-6МА
Диаметр втулки, мм | Допустимое давление, МПа | Теоретическая подача, м3/с | Фактическая подача, м3/с |
160 | 16 | 0,0317 | 0,0269 |
170 | 13,9 | 0,0355 | 0,03018 |
180 | 12,2 | 0,0404 | 0,03434 |
Затем значения Qф и Р нанесем на график (рис. 2.1) Q = f(DR).
На значениях подачи отметим интервалы регулирования расхода. Найдем потери давления, зависящие от глубины. Они равны потерям в ЛБТ, СБТ, УБТ, кольцевом пространстве между ЛБТ и стенками скважины, СБТ и стенками скважины, УБТ и стенками скважины, замках, кольцевом пространстве между замками и стенками скважины.
По таблице 2.8 определяем эти потери:
Эти потери найдены при расходе промывочной жидкости равном 0,026 м3/с.
Пересчитаем потери, зависящие от глубины на другие значения расходов по формуле:
Остальные потери давления, зависящие от глубины вычисляются аналогично и наносятся на график.
Определяем потери давления, не зависящие от глубины. Они равны суммарному перепаду давления во всех элементах циркуляционной системы, исключая перепад в забойном двигателе и потерь зависящих от глубины.
Пересчитаем потери, не зависящие от глубины на другие значения расходов по формуле:
Для остальных расходов потери вычисляются аналогично и наносятся на график.
Рассчитаем также характеристику 3ТСШ1-195 для различных расходов. Результаты нанесем на график (рис. 2.1).
Рисунок 2.1 НТС – номограмма.
2.6.2 Расчет рабочих характеристик забойных двигателейРабочей выходной характеристикой турбобуров называется зависимость частоты вращения, момента и мощности на валу турбобура от осевой нагрузки на долото. Она служит для определения интервала осевых нагрузок, при которых наблюдается устойчивая работа турбобура, а также для оптимизации режимов турбинного бурения.
Исходные данные для расчета:
· Турбобур 3ТСШ1-195;
· Q = 0,026 м3/с;
· r = 1100 кг/м3;
· Dд = 215,9 мм;
· Муд = 4*10-3 м;
· Dс = 0,130 м;
· D1 = 0,149 м;
· D2 = 0,124 м;
· Dв = 0,135 м.
В = 0,5*4790*9,81 = 23495 Н – вес вращающихся деталей и узлов турбобура.
Произведем расчет.
Определим параметры турбины n, М, DR:
Определим разгонный момент на валу турбобура:
где m = 0,12 – коэффициент трения в опорах турбобура;
Р – средней радиус трения;
Рг – гидравлическая нагрузка в турбобуре;
Определим разгонную частоту вращения вала турбобура:
где Мт = 2*М, Мт – тормозной момент;
Определим удельный момент в пяте:
Основные расчетные уравнения, описывающие рабочую характеристику турбобура;
Результаты расчета сводим в таблицу 2.11.
Таблица 2.11
Gi, кН | 0 | 50 | 125 | 150 | 175 | 200 | 260 |
ni, с-1 | 4,48 | 4,9 | 5,52 | 5,74 | 5,13 | 4,53 | 3,08 |
Мi, Нм | 118,75 | 528,74 | 1143,74 | 1348,74 | 1553,74 | 1758,74 | 2250,74 |
Ni, кВт | 3,34 | 16,275 | 39,69 | 48,63 | 50,11 | 50,047 | 43,514 |
На основе полученных данных построим рабочую характеристику турбобура 3ТСШ1-195.
Рисунок 2.2 Рабочая характеристика 3ТСШ1-195
в координатах M – G; N – G; n – G.
Произведем анализ рабочей характеристики турбобура. Из рис. 2.2 видно, что турбобур устойчиво работает в области нагрузок 0 ¸ 140 кН и 160 ¸ 250 кН.
Из практики известно, что при êРг - Gi ê< 104 Н наблюдается усиление вибраций турбобура и бурильного инструмента. В нашем случае эта область распространяется на интервал нагрузок 140 ¸ 160 кН. Отсюда следует, допустимая нагрузка на турбобур лежит вне зоны вибрации, поэтому режим работы нормальный.
2.6.3 Составление проектного режима буренияВыбор проектного режима бурения скважины производим в соответствии с пунктами 2.1; 2.6.1; 2.6.2, а также исходя из опыта бурения скважин и выбранные данные сводим в таблицу 2.12.
Таблица 2.12
Сводная таблица режима бурения
Интервал бурения, м | Диаметр долота, мм | Тип забойного двигателя | Расход, м3/с | Давление, Мпа | Нагрузка на долото, кН | Параметры промывочной жидкости | |||
от | до | r, кг/м3 | УВ, с | ПФ, см3/ 30мин | |||||
0 | 550 | 295,9 | –– | 0,037 | 13 | 10-12 | 1120 | 35 | 6 |
550 | 1300 | 215,9 | 3ТСШ-195 | 0,026 | 15 | 17 | 1100 | 25 | 5¸6 |
Расчет эксплуатационной колонны:
Исходные данные для расчета:
На рис.2.3 приведена расчетная схема эксплуатационной колонны.
Dк =244,5 мм;
дк = 8,9 мм;
Нк = 550 мм;
Dэ = 168 мм;
Нэ = 1300 м;
h2 = 750 М;
с =1100 кг/м3;
с =1000 кг/м3;
Рисунок 2.3 Расчетная схема эксплуатационной колонны.
Цементный раствор от 550 до 1300 м. Облегченный цементный раствор от устья до 550 м. Подъем цемента осуществляется до устья скважины. Продавку цементного раствора в заколонное пространство осуществляется технической водой с = 1000 м/кг3.
Рассчитаем плотность облегченного цементного раствора:
где – давление поглощения на глубине 550 м;
где кп – коэффициент поглощения, кп = 1,5;
св – плотность воды, св =1000 кг/м3;
Н` – глубина поглощающего пласта, Н` = 550м;
Округлим плотность облегченного цементного раствора до 1500 кг/м3.
Рассчитаем плотность цементного раствора по формуле:
где – давление поглощения на глубине 1300м;
где Рпл – пластовое давление на глубине 1300 м, Рпл = 9,0 МПа;
Плотность цементного раствора равна 1820 кг/м3.
Рассчитаем для цементного раствора пластическую вязкость и ДНС:
Для цементного раствора:
Примем фц.р. = 8,47 Па, зц.р. = 0,038 Па*с.
Рассчитаем для облегченного цементного раствора пластическую вязкость и ДНС:
Примем фц.р. = 4,05 Па, зц.р. = 0,018 Па*с.
2.5.1 Расчет построение эпюр внутренних и наружных избыточных давленийОпределение внутренних давлений.
Максимальное значение рабочих внутренних давлений отмечается при испытании скважины на герметичность. Минимальные значения – в конечный период эксплуатации.
1) В период ввода скважины в эксплуатацию.
где
Рвz – внутренние давление на глубине Z;
где Ропр – давление опрессовки;
Ру – давление на устье.
Так как Ропр < 10 МПа, то принимаем Ропр = 10 МПа, где 10 МПа – минимальное опрессовочное давление для колонны диаметром 146 мм.
2) При окончании эксплуатации.
Определение наружных давлений.
1) В период ввода скважины в эксплуатацию
для Z < Hскв,
где к – коэффициент разгрузки цементного камня, к = 0,25.
для Z = Нскв
2) При окончании эксплуатации
Наружные избыточные давления:
Внутренние избыточные давления:
По полученным данным эпюры внутренних и наружных избыточных давлений (см. рис 2.4 и 2.5).
Рисунок 2.4 Эпюра наружных избыточных давлений.
Рис. 2.5 Эпюра внутренних избыточных давлений.
2.5.3 Выбор и расчет обсадных труб для эксплуатационной колонны.Выбор обсадной колонны производим из условия недопущения смятия и разрыва колонны, страгивания резьб при спуске.
Максимальное наружное избыточное давление Рни = 9,1 МПа, поэтому для первой секции выбираем трубы, имеющие:
Ркр1 ≥ Рни *[n1],
где [n1] = 1,1;
Ркр1 ≥ 9,1*106*1,1 = 10,1 МПа.
Выбираем трубы диаметром 168 мм и толщиной стенки д = 7 мм, с группой прочности «Д», имеющие следующие характеристики:
Ркр = 16,6 МПа, Рт = 28,8 МПа, Рстр = 880 кН.
Проверяем трубы на прочность:
И так окончательно выбираем трубы согласно ГОСТу–632–64, ОТТМ диаметром 168,3 мм и толщиной стенки 7,3 мм, диаметром муфты 188 мм.
Результаты расчетов сведены в таблицу 2.13.
Таблица 2.13
Номер секции | L, м | д, мм | Группа прочности | Q, кН | n1 | n2 | n3 |
1 | 1300 | 7,3 | Д | 382,6 | 1,8 | 6,7 | 2,3 |
Выбор технологической оснастки.
Под названием «технологическая оснастка» подразумевается набор устройств, которыми оснащают обсадную колонну для обеспечения ее спуска и качественного цементирования. Выбранная технологическая оснастка включает в себя следующие элементы:
1) Элементы оснастки кондуктора.
а) башмак с бетонной насадкой БК-245;
б) обсадные трубы диаметром 245 мм;
в) для предупреждения перетока бурового или тампонажного раствора из заколонного пространства в обсадную колонну, в процессе крепления скважины оборудуется обратным клапаном ЦКОД-245. его монтируют или в башмаке обсадной колонны или на 10-12 м выше него.
г) для цементирования обсадной колонны в стволе скважины, с целью равномерного заполнения кольцевого пространства тампонажным раствором и качественного разобщения, оборудуется центраторами ФП 245х3500 – 3шт.
2) Элементы оснастки эксплуатационной колонны.
а) башмак с бетонной насадкой БК-168 мм;
б) обсадные трубы диаметром 168 мм;
в) обратный клапан ЦКОД-168;
г) центраторы ФП 168х214х265 – 8 шт.;
д) турбулизаторы ЦТ 168/214-3 – 8 шт.;
Их устанавливают на обсадной колонне в зонах расширения ствола скважины на расстоянии не более 3-х метров друг от друга;
е) для разрушения корки бурового раствора на стенках скважины при расхаживании обсадной колонны, и образования прочного цементного кольца за обсадной колонны, оборудуется скребками 168/214 – 6 шт.
2.6 Цементирование эксплуатационной колонны 2.6.1 Расчет необходимого количества материаловДля облегчения качественного крепления обсадной колонны выбираем портландцемент ПЦТ-ДО-50.
Определяем водоцементное отношение для облегченного цементного раствора и для цементного раствора по формуле:
где сц = 2920 кг/м3 – плотность цементного раствора;
– для облегченного цементного раствора:
– для цементного раствора:
Найдем необходимый объем:
– облегченного цементного раствора:
т.к. облегченный цементный раствор находится внутри кондуктора, т.е. в обсаженной части ствола скважины:
– цементного раствора:
Объем воды для приготовления:
– для цементного раствора:
– для облегченного цементного раствора:
Количество цементировочной техники:
где снас –насыпная плотность цементного порошка;
Vбунк –объем бункера цементосмесительной машины СМН-20;
Для приготовления цементного раствора:
Для приготовления облегченного цементного раствора:
Всего потребуется для приготовления и закачки цементных растворов 3 машины 1АС-20 и 4 машины ЦА-320.
Определим объемное содержание глины, цемента и воды в 1 м3.
где qсм – масса сухого тампонирующего материала,
qв – объем содержания воды в 1м3 раствора,
где qгл –масса глинопорошка в 1м3 раствора,
qц – масса цемента в 1м3 раствора,
Определим для облегченного цементного раствора:
Определим общую массу цемента, глины и воды потребного для приготовления облегченного цементного раствора:
Найдем qсм для цементного раствора:
Определим общую массу цемента, глины и воды потребного для приготовления облегченного цементного раствора:
Определим подачу ЦА-320 при закачке облегченного цементного раствора:
где Qв –объемная подача воды, Qв = 12,6 л/с;
Определим подачу ЦА-320 при закачке цементного раствора:
Определим время закачки:
– облегченного цементного раствора:
– цементного раствора:
Результаты расчета цементирования приведены в приложении 1.
График процесса закачки и продавки цементировочного раствора приведены на рис.2.5, а схема обвязки на рис.2.6.
Рисунок 2.5 График процесса закачки и продавки цементного раствора.
Рис. 2.6 Схема обвязки.
1, 2 – Смесительные машины с цементным и облегченным цементным растворами;
3 – ЦА для приготовления цементного и облегченного цементного раствора;
4 – ЦА начинающий продавку;
5 – Цементировочная пробка;
6 – Цементировочная головка;
7 – Блок манифольда;
8 – Станция контроля за цементированием.
2.6.3 Контроль качества цементированияНаиболее эффективным методом, позволяющим получить максимальную информацию о качестве цементирования обсадной колонны не зависимо, от температуры и плотности тампонажного камня, является акустическая цементометрия. Для контроля качества цементирования обсадной колонны применяют акустические цементомеры АКЦ-1 и АКЦ-2. путем совместной интерпретации кривых акустической цементограммы представляется возможным:
– определить высоту подъема тампонажного раствора за обсадной колонной;
– оценивать состояние контакта цементного камня с колонной, а в некоторых случаях и с породой в кольцевом пространстве;
– исследовать процессы формирования цементного камня в затрубном пространстве во времени и оценивать степень влияния на камень различных нагрузок, испытываемых обсадной колонны при перфорации, избыточных внутренних давлениях и выполнение технологических операций в скважине.
С целью повышения информативности акустической цементометрии желательно использовать приставки к наземной аппаратуре цементомера, позволяющие регистрировать полный акустический сигнал, подающий в приемник цементомера. На основе интерпретации характеристик полного акустического сигнала достаточно уверено можно оценивается состояние контакта цементного камня с породой, учитывая влияния факторов на результаты измерений.
Для оценки герметичности обсадной колонны нужно провести опрссовку ствола скважины.
Давление опрессовки должно быть не менее 7 МПа. Колонна считается герметичной, если при опрессовке ее водой давление за 30 минут снижается не более чем на 0,5 МПа, а также если после замены продавочной жидкости водой не наблюдается перелива жидкости и выделения газа на устье.
При выборе буровой установки исходят из того, что бы соблюдались следующие условия: критическая нагрузка, была бы больше нагрузки в процессе бурения и крепления, оснастка и диаметр талевого каната обеспечивали безаварийную работу на буровой.
С учетом этих условий, а также на основе работы на данной группе площадей на идентичных скважинах делаем следующий вывод: для бурения скважины выбираем буровую установку согласно ГОСТу – 16293 – 82 БУ – 75 БрЭ.
В таблице 3.1 приведена техническая характеристика этой буровой установки.
Таблица 3.1
Техническая характеристика БУ – 75 БрЭ.
№ | Параметры | БУ – 75 БрЭ |
1 | 2 | 3 |
1 | Тип привода | электрический |
2 | Число двигателей основных механизмов | 2 |
3 | Допустимая нагрузка на крюке, кН | 1000 |
4 | Мощность привода лебедки, кВт | 320 |
5 | Оснастка талевой системы | 4х5 |
6 | Число скоростей подъема | 4 |
7 | Число буровых насосов | 1 |
8 | Полезная высота вышки, м | 36,74 |
9 | Наибольшее давление на выкиде | 24,5 |
10 | Масса установки, кг | 1475 |
Продолжительность отопительного периода в районе деятельности БП «Тюменбургаз» составляет 284 сутки, по этому для работы в зимних условиях необходимо предусматривать обогрев буровой.
Отопительная установка на буровой предназначена для обеспечения паром низкого давления отопительных и технологических нужд.
На буровой пар расходуется на подогрев глинистого раствора в приемных емкостях и желобной система, подогрев выкидных линий буровых насосов, подогрева масла и двигателей внутреннего сгорания пере их пуском в работу, для отопления культбудки и насосного помещения, для разогрева замков и бурильных труб при СПО.
В зимних условиях осуществляется индивидуальный обогрев буровых установок от двух паровых котлов ПКН-20.
Подача пара к объектам буровой осуществляется по паропроводу из труб диаметром 0,1 м. Во избежании разрыва паропровода, они изготавливаются с П – образными компенсаторами.
Для регулирования подачи пара на линии паропровода устанавливают чугунные задвижки.
Из котельной пар подводится к подсвечникам, пульту управления бурильщика и емкостям с буровым раствором.
Остальное буровое оборудование, при необходимости, разогревается сухим паром от передвижной паровой установки ППУ – 3.
Для членов буровой бригады на зимний период предусмотрены отапливаемые теплушки.
3.3 Обоснование и выбор вновь применяемойВыбор бурового и дополнительного оборудования вышки и соответствующих им конструктивных узлов при вышечных сооружений на основании справочников и инструкций в зависимости от условия проводки скважины (вида энергии, глубины, конструкции скважины, способа бурения и т.д.) и имеющегося в наличии парка буровых установок.
На данной разбуриваемой группе площадей применяется буровая установка БУ – 75 БрЭ, техническая характеристика которой приведена в таблице 3.1.
Развитие нефте- и газодобывающей промышленности существенно зависит от темпов бурения скважин. Последние значительно сдерживаются авариями и осложнениями, на ликвидацию которых затрачивается 10-12 % общего времени, задалживаемого на бурение скважин.
Буровые организации оснащаются современными буровыми станками, оборудованием, инструментами и приборами. Для осуществления бурения скважин разработаны технологические процессы, обеспечивающие строительство скважин глубинами 7-12 тыс. м. Однако современные техника и технология в процессе бурения используются не всюду правильно, что иногда приводит к нарушениям нормального цикла бурения и возникновению аварий и осложнений. Освоение новых площадей часто сопровождается осложнениями, вызванными незнанием особенностей горно-геологических условий этого региона.
Проблема предотвращения аварий и осложнений по прежнему актуальна. Решение ее позволило бы сэкономить значительные средства, сократить время бурения скважин, повысить технико-экономические показатели.
Необходимо помнить, что беспечность и пассивность в работе исполнителя — источник аварии. От квалифицированной работы рабочих в первую очередь зависят безаварийное бурение скважин на нефть и газ и исключение осложнений.
4.2 Виды аварий и причины их возникновенияАварии в бурении, представляющие собой нарушение нормального процесса проводки скважин, приводят к значительным затратам времени и средств, нанося тем самым большой материальный ущерб.
Аварии делят на следующие виды:
0 комментариев