3.2 Пути совершенствования технологии закачки воды в пласт

На многих многопластовых месторождениях Арланского УДНГ и на одну нагнетательную скважину приходится более двух уже вскрытых (перфорированных) эксплуатационных объектов. Это делалось для поддержания пластового давления (объемов закачки воды) при ограничении капитальных вложений на строительство новых нагнетательных скважин. Известно, что совместная закачка воды в несколько пластов, неоднородных по проницаемости, приводит к быстрому обводнению залежей, низкому охвату их воздействием и образованию водяных блокад отдельных невыработанных зон. При этом ускоренное продвижение фронта вытеснения нефти водой по высокопроницаемым пластам приводит к прорывам воды к забоям добывающих скважин и как следствие возрастают объем попутно добываемой воды и затраты на ее нагнетание. Это в лучшем случае приводит к повышению себестоимости добычи нефти, а в худшем случае - выводу обводненной скважины из эксплуатации вместе с потерей неосвоенных запасов нефти, оставшихся в низкопроницаемых пластах. Практика совместной закачки воды в несколько пластов приводит также к потере информации о фактических закачках воды в каждый из пластов. Противоречие «экономических соображений» и охраны недр при выборе эксплуатационных объектов уже сейчас можно урегулировать, если использовать технологию одновременно - раздельной закачки воды в несколько эксплуатационных объектов через одну скважину. Данная технология является частью технологии одновременно раздельной разработки нескольких эксплуатационных объектов, предложенной НИИ «УралГеоТех» и НИИ «Башнефть». Главной отличительной особенностью данной технологии являются: поочередный спуск секций пластов, проверка герметичности пакера (снизу и сверху) для каждой последующей секции, соответствующей интервалу, на который нужно и можно создавать дифференцированную репрессию. Это позволит предупредить перетоки как между выбранными интервалами – пластами через пакер в момент закачки (при различных репрессиях для разных интервалов), так и через колонну труб в момент остановки, несмотря даже на существенное различие в пластовых давлениях, а также гарантировать надежное извлечение многопакерной установки из скважины для ревизии или ремонта. Данная технология позволяет исследовать отдельно каждый из выделенных интервалов и устанавливать для них оптимальное значение репрессии с учетом существующих ограничений. Для реализации технологии используется скважинная установка, состоящая из колонны труб с несколькими пакерами, количество которых совпадает с количеством секций, причем каждая секция включает, по меньшей мере, одну скважинную камеру с клапаном, регулирующим поток. При этом один или несколько пакеров сверху оснащены разъединителем колонны труб без или с термокомпенсатором, или отдельным телескопическим соединением для раздельного спуска и извлечения каждой секции из скважины, а также снятия напряжения колонны труб. На рис.1 приведена схема компоновки для закачки воды по трем эксплуатационным объектам (изолированным пластам). В правилах разработки нефтяных и газонефтяных месторождений под эксплуатационным объектом понимают «продуктивный пласт, часть пласта или группу пластов, выделенных для разработки самостоятельной сеткой скважин» не исключающей ее совмещения с другими объектами, но имеющих индивидуальную систему воздействия, обеспечивающую дифференцированное управление фильтрационными потоками (полем пластовых давлений)». Если через одну нагнетательную скважину воздействуют на два неоднородных и гидравлически изолированных пласта двумя различными репрессиями, а со стороны добывающих скважин на те же пласты также создают совершенно независимые значения депрессий, то эти пласты следует рассматривать как отдельные эксплуатационные объекты разработки.

Рис. 7 Схема подземной компоновки ОРЗ нагнетательной скважины

И наоборот, если при совместной эксплуатации нескольких пластов некоторые из этих пластов вообще не охвачены воздействием, например из-за низкой проницаемости или из-за невозможности создать на них предельный градиент давления, то вряд ли их можно относить к эксплуатационным объектам, так как в этом случае они ничем не отличаются от неперфорированных пластов. Самостоятельная сетка скважин на уровне каждого объекта нужна исключительно для обеспечения оптимального поля пластовых давлений, адаптированного к конкретным геолого-технологическим условиям выделенного объекта. При технологии одновременно раздельной разработки нескольких объектов это возможно обеспечить с помощью совмещенной для них сеткой скважин. В настоящее время проведена работа для нагнетательных скважин с четырьмя изолированными интервалами пластов, но существует принципиальная и техническая возможность значительно увеличить количество таких интервалов (объектов). Успешное внедрение данной технологии возможно на нагнетательных скважинах, имеющих открытый ствол до продуктивных пластов, что позволяет изменять режимы закачки воды в каждый из интервалов (пласт) путем смены регулирующих клапанов или штуцеров с помощью канатной техники и специальных инструментов. При использовании данной технологии можно контролировать закачку воды в каждый объект и оптимально регулировать процессы разработки – дифференцированно воздействовать на отдельные пласты за счет оперативного (сменой устьевого регуляторов или забойных регуляторов в соответствующих секциях) изменения режимов каждого из пластов скважины в широком диапазоне, что в конечном итоге позволит увеличить коэффициент нефтеотдачи. Данная технология позволяет оптимизировать репрессии, изменять направления фильтрации, производить нестационарное заводнение даже в зимний период. Таким образом, на многопластовых месторождениях необходимо проводить широкомасштабное внедрение технологии ОРРНЭО с целью обеспечения дифференцированного воздействия на различные эксплуатационные объекты (интервалы и/или участки пласта). В настоящее время проведена работа для нагнетательных скважин с четырьмя изолированными интервалами пластов, но существует принципиальная и техническая возможность значительно увеличить количество таких интервалов (объектов). Диаметр колонны труб и типоразмеры регулирующего клапана для каждой секции выбирают с помощью программного комплекса Уральского филиала НИИ «Башкиргаз» SANDOR в зависимости от геолого-промысловых характеристик соответствующих им эксплуатационных объектов. Каждую последующую секцию спускают на колонне технологических труб, а верхнюю секцию - на колонне фондовых труб. Специализированное оборудование для реализации технологии ОРРНЭО разрабатывает ООО НТП «Нефтегазтехника» г. Уфа. Остановимся подробнее на отдельных разработках. Разъединитель колонны типа РКГ, РКМ, РКШ. Разъединитель колонны предназначен для отсоединения (гидравлическим воздействием – РКГ или механически РКМ, РКШ) и последующего соединения (автоматически - гидравлическим или механическим воздействием) колонны НКТ с установленным в скважине пакером, а также для компенсации изменения длины колонны НКТ при термобарических условиях (рис.8) Пакер типа ПДШ. Главное преимущество данного пакера - повышение его герметичности, а также надежности извлечения из скважины. При этом сокращается количество спуско-подъемных операций и аварий при эксплуатации многопакерной установки. Пакер включает сверху якорь, срабатывающий как от трубного, так и от забойного давления, что повышает надежность пакера как при посадке, так и при его эксплуатации. Также пакер имеет снизу заякоривающее устройство «конус – плашек», освобождающееся как от натяга (8 – 12 тн) колонны труб, так и без натяга, путем перемещения (механическим или гидравлическим путем) скользящей втулки в стволе, не срезая при этом срезных винтов плашкодержателя.


Рис.2. Разъединитель колонны РКШ

Рис.8 Разъединитель колонны РКШ

Забойный регулятор типа 5 РД. Данный регулятор позволяет в зависимости от параметров пласта поддерживать заданное забойное давление или заданный расход воды в процессе закачки даже при изменении пластового давления и коэффициента приемистости. Устьевой регулятор типа 5 РР. Данный регулятор в отличие от традиционно используемых устьевых штуцеров позволяет оперативно изменять и поддерживать заданные значения устьевого давления, в частности при исследовании пластов. Эффективность технологии одновременно раздельной закачки воды в несколько пластов на нагнетательных скважинах была проверена на следующих многопластовых месторождениях: Ванъеганском, Ай-Еганском, Приобском, Тарасовском, Барсуковском, Южно-Тарасовском, Фестивальном, Восточно-Ягтинском, Южно-Харампурском и других. Экономический эффект указанной технологии в основном выражается в дополнительной добыче нефти или сокращении капитальных вложений на бурение дополнительных скважин. Технология позволяет по сравнению с раздельной эксплуатацией нескольких пластов:

-сократить капитальные вложения на бурение скважин (в 2-3 раза);

- снизить эксплуатационные расходы (переменные затраты) (на 20-40%);

- уменьшить срок освоения многопластового месторождения (на 30%);

- увеличить рентабельный срок разработки обводненных и загазованных пластов продлением их эксплуатации с подключением дополнительных объектов;

- увеличить коэффициент нефтеотдачи пластов за счет увеличения срока их рентабельной разработки;

- уменьшить вероятность замерзания фонтанной арматуры и выкидных коллекторов нагнетательных скважин из-за низкой проницаемости пласта;

- повысить эффективность использования скважин и скважинного оборудования;

- уменьшить вероятность образования негерметичности эксплуатационной колонны.

По сравнению с совместной эксплуатацией нескольких пластов технология позволяет:

- увеличить коэффициент нефтеотдачи пластов за счет разукрупнения объектов разной проницаемости и разной насыщенности и повышения степени охвата их заводнением;

- увеличить добычу нефти на 30-40 % за счет дифференцированного и управляемого воздействия на каждый из пластов;

- обеспечить учет закачиваемой воды (агент) в каждый из пластов;

- предупредить межпластовые перетоки по стволу скважины в момент ее остановки и при малых репрессиях;

- повысить эффективность методов повышения нефтеотдачи за счет использования одной скважины одновременно для ППД и селективной закачки агента для выравнивания профиля приемистости;

- нестационарно воздействовать на пласты, изменяя их режимы;

- обеспечить повышенные репрессии на низкопроницаемые нефтенасыщенные пласты с одновременнымограничением закачки воды в высокопроницаемые пласты;

- регулировать направления и скорости фильтрации пластовых флюидов, оперативно управляя полем пластовых давлений;

- уменьшить вероятность образования негерметичности эксплуатационной колонны;

- исследовать и контролировать разработку отдельных пластов. В настоящее время технология успешно внедрена на 37 нагнетательных скважинах, в том числе на 12 с 3-мя пластами и на 25 с 2-мя пластами. Технология наиболее эффективно реализуется на газлифтных и нагнетательных скважинах.



Информация о работе «Разработка нефтяных месторождений с применением законтурного и внутриконтурного заводнений»
Раздел: Геология
Количество знаков с пробелами: 84004
Количество таблиц: 2
Количество изображений: 12

Похожие работы

Скачать
43402
1
1

... обратить взор на вклад именно этого ученого в развитие нефтяной науки и нефтедобычи России в целом. По мнению автора и многих исследователей именно И.М.Губкину принадлежит роль в зарождении науки о разработке нефтяных месторождений, что прослеживается в материалах приводимых в следующем параграфе. 2. Зарождение науки о разработке нефтяных и газовых месторождений Для осуществления управления ...

Скачать
57796
0
0

... в северной части месторождения в одном из основных пластов VI проявляется активность контурных вод. В промежуточных пластах очень сильно влияние литологического фактора. Проектирование разработки Арланского месторождения, имеющего огромные размеры, сложное геологическое строение продуктивных пластов, высокую вязкость нефти, представляло мало изученную проблему. Проектирование велось по отдельным ...

Скачать
15844
0
0

... заводнения для поддержания давления и при площадном заводнении. При гидрогеологических исследованиях, проводимых на эксплутационных и разведочных площадях, следует обязательно учитывать эти воды. Рисунок 1. Схема залегания подземных вод нефтегазового месторождения. 1 - грунтовая вода; 2 - нефтяной пласт; 3 - пласт, насыщенный водой; 4 - газонефтяной пласт; 5 - нефтяной пласт с пропластками ...

Скачать
28483
2
2

... кальций и газ аргон. Недостатком радиологического метода является ограниченная возможность его применения главным образом для определения возраста магматических и метаморфических пород. 2. Непско-Ботуобинская нефтегазовая область 2.1 Основные черты Рассматриваемая территория, изображенная на рисунке 1, занимает южную часть Сибирской платформы в пределах Непско-Ботуобинской антеклизы, а в ...

0 комментариев


Наверх