6. Определяем импульсную функцию ω(t).
Построим график импульсной функции ω (t):
Анализ элемента как системы
1. Исследуем систему с уравнением
2. на устойчивость.
Для этого перейдем от дифференциального уравнения к операторной форме.
- оператор дифференцирования, подставим его в данное уравнение.
Получаем характеристическое уравнение:
,
Находим корни квадратного уравнения:
D = b2 – 4ac = T12 – 4T2 = 0,7396 – 16,264 = –15,52;
α = –0,106.
Получили устойчивое состояние, т. к. αi < 0, т. е. все корни характеристического уравнения находятся в левой полуплоскости.
Проведем оценку качества системы.
а) Прямая оценка качества:
Находим передаточную функцию W(p):
Запишем переходную функцию.
Построим график переходной функции h(t):
Учитывая, что с = 1,24, b = 1,068 мм2/с,
Находим время переходного процесса:
hуст = 1,
тогда Δ = 5%(hуст) = 0,05.
Определим перерегулирование – максимальное отклонение регулируемой величины от установившегося значения:
Находим колебательность системы, которое характеризуется числом колебаний регулируемой величины за время переходного процесса.
h = 3 (т. к. Четвертая волна не до конца).
Время нарастания регулируемой величины:
tн(tмах) = 13 с.
Время первого согласования, т.е. время, когда регулируемая величина первый раз достигает своего установившегося значения:
t1 = 7 с.
б) Косвенная оценка качества:
Рассмотрим амплитудно-частотную характеристику процесса.
Построим график амплитудно-частотной функции А(ω):
По графику проводим анализ:
1. Находим показатель колебательности – М.
, где Amax = 4,7545, A(0) = 1.
Следовательно М = 4,7545.
2. Резонансная частота ωр = 0,243, при Amax = 4,7545.
3. Частота среза при которой амплитудно-частотная характеристика достигает величины равной 1.
ωср = ± 0,3438.
Время переходного процесса и частота среза связаны соотношением:
tП ≈ (1÷2) 2π/ ωср ≈ (1÷2) 18,27 (с).
4. Полоса пропускания частот определяется:
Откладываем получившееся значение от Amax.
Получаем полосу пропускания:
ω1 = 0,2154 и ω1 = 0,2682.
3. Исследуем систему с уравнением
на устойчивость.
Для этого перейдем от дифференциального уравнения к операторной форме.
- оператор дифференцирования, подставим его в данное уравнение.
Получаем характеристическое уравнение:
,
Находим корни квадратного уравнения:
р = -1/Т1 = -1,163.
Получили устойчивое состояние, т. к. αi < 0, т. е. все корни характеристического уравнения находятся в левой полуплоскости.
Проведем оценку качества системы.
а) Прямая оценка качества:
Находим передаточную функцию W(p):
Запишем переходную функцию.
Построим график переходной функции h(t):
Так как система является устойчивой и график переходной функции не имеет колебаний, то можно определить только максимальное значение регулируемой величины, которое будет равно установившемуся:
hмах = hуст = 1.
Определим перерегулирование:
б) Косвенная оценка качества:
Рассмотрим амплитудно-частотную характеристику процесса.
Для этого находим частотную форму передаточной функции.
Построим график амплитудно-частотной функции А(ω):
По графику проводим анализ:
1. Находим показатель колебательности – М.
, где Amax = 1, A(0) = 1.
Следовательно М = 1.
2. Резонансная частота ωр = 0, при Amax = 1.
... . Существует классификация АСР по функциональному назначению, делящая их на системы регулирования температуры, давления, расхода, уровня и т.п. 1.3 Описание технологической схемы Принципиальная технологическая схема процесса варки представлена на рисунке 5. В состав варочной установки входят: ГБЩ – бак-аккумулятор горячего белого щелока, ГЧЩ – бак-аккумулятор горячего черного щелока, ПрЩ – ...
... , по приведённой методике, производится расчёт экономической эффективности внедрения автоматизации редукционно-охладительной установи и сравнение технико-экономических показателей работы подразделения. Экономическая эффективность внедрения системы автоматического контроля и регулирования редукционно-охладительной установки определяется путём сопоставления технико-экономических показателей работы ...
... кассетных установок в данном цехе и интенсивный отвод паровоздушной смеси из бака сбора конденсата. 2. Автоматизация технологического процесса Рис.1. Автоматизация камеры периодического действия для тепловой обработки железобетонных изделий: а — функциональная схема; 1 — гребенка; 2 — задвижка с ручным приводом: 3 — приточный затвор: 4 — эжектор; 5 — паропровод; 6 — вентиляционный затвор; ...
... кальциевых каналов. Нимодипин Нимодипин - блокатор кальциевых каналов, производное дигидропиридина. Избирательно взаимодействует с кальциевыми каналами типа L и блокирует трансмембранное поступление ионов кальция. Фармакологическое действие: Особенностью препарата является преимущественное влияние на кровоснабжение мозга. Препарат оказывает дилатирующее действие на сосуды головного мозга ...
0 комментариев