4.2 РОЗРАХУНОК ЗАГАЛЬНОГО РІВНЯ ШУМІВ СИСТЕМИ
В загальному пропонується рівень шумів розрахувати за допомогою наступного виразу:
Тут N - кількість частотних каналів,
k1, ...k4 - коефіцієнти співвідношень,
Кш.ДВ - значення коефіцієнта шумо-завад для джерел випромінювання,
Кш.ОМ - коефіцієнт шумо-завад оптичного мультиплексора,
Кш.ОП - коефіцієнт шумо-завад для оптичного підсилювача,
М — кількість підсилювачів,
Кш.ФП - коефіцієнт шумо-завад для фотоприймачів ВОСПІ,
Кш.ОВ - коефіцієнт шумо-завад для волокна оптичних трактів.
Всі коефіцієнти мають бути подані для абсолютних потужностей.
4.3 ВРАХУВАННЯ НЕЛІНІЙНИХ ЕФЕКТІВ ОПТИЧНИХ КОМПОНЕНТІВ
(SRS - Stimulated Raman Scattering) представляє собою значно меншу проблему у порівнянні зі стимульованим Брілюенівським розсіюванням (SBS). Реальні волоконно-оптичні лінії зв'язку (ВОЛЗ) допускають використання оптичного підсилювача (EDFA) c рівнем порядку 25 дБп або декількох підсилювачів з меншим рівнем вихідного сигналу. SRS за своєю природою близьке до SBS, але викликається іншими фізичними явищами.
SRS є частотно-залежним і проявляється більш виражено на коротких хвилях у порівнянні с довгохвилевими (тобто на більш високих частотах). Можна зауважити, що короткохвилеві канали мають набагато меншу амплітуду у порівнянні с довгохвилевими каналами, тобто спостерігається зміна амплітуд сигналів по кожному з каналів. При цьому більшому затуханню піддаються саме більш короткохвилеві (високочастотні) канали. У системах WDM вплив цього типу розсіювання полягає у перерозподілі потужності з короткохвильових у довгохвильові канали. У цьому випадку це явище працює як раманівський підсилювач і довгохвильові канали підсилюються за рахунок короткохвильових до тих пір, доки різниця у довжинах хвиль лежить у смузі частот раманівського підсилення. Це явище може виникнути у кварцовому волокні, де підсилення може стати результатом використання кроку між каналами 200 нм.
Найбільш збіднюються короткохвилеві канали, так як їх потужність може одночасно перекачуватися у багато каналів одночасно. Такий перерозподіл потужності між каналами можна визначити за характеристиками системи, тому що він залежить від характеру розташування біт - підсилення проходить тільки у тому випадку, коли двійкові «1» присутні в обох каналах одночасно. Таке підсилення приводить до збільшення флуктуацій потужності, яка збільшує рівень шуму приймача та погіршує його характеристики. Раманівських перехресних завад можна запобігти, якщо потужності каналів зробити такими малими, що підсилення вийде незначним за всією довжиною волокна. При використанні в системах DWDM Раманівських підсилювачів необхідно враховувати факт виникнення перехресних завад, що викликаються наявністю декількох сигналів, переданих на різних довжинах хвиль.
SRS може виникнути у системах, що використовують як одномодове, так і багатомодове волокно. Для того, щоб спостерігати SRS за наявності тільки одного каналу, без використання оптичного підсилювача, необхідно мати рівень сигналу порядку +30 дБп. У літературі для SRS вказується, що поріг, за якого в багатоканальній системі спостерігається погіршення на 1 дБ, що викликається наявністю раманівського випромінювання може бути оцінений з нерівності:
де Рtot - сумарна потужність всіх каналів WDM (мВт), - смуга оптичного спектру (нм), у якій розподілені ці канали, Leff - ефективна довжина, виражена в мегаметрах - Мм, що визначається як:
де а - коефіцієнт загасання волокна (дБ), a L - довжина волокна (км), Отже запишемо з (4),(5):
Поріг SRS для систем, що використовують волокно типу G.653 дещо нижчий, ніж для систем, що використовують волокно типу G.652, завдяки меншій ефективній площі волокна G.653. SRS практично не вносить погіршень в одноканальні системи. Ефект SRS фактично обмежує світлову потужність в каналі.
При використанні одно канальних систем небажані ділянки спектру можуть бути прибрані з допомогою фільтрів. Для WDM систем до цієї пори практично немає технічних прийомів, що дозволили би прибрати вплив SRS. Разом із цим вплив SRS можна знизити шляхом зменшення вхідної оптичної потужності.
(SBS - Stimulated Brillouin Scattering) установлює верхню межу на рівень оптичної потужності, що може бути переданий оптичним волокном. При перевищенні визначеного рівня оптичної потужності, іменованого порогом SBS, в ОВ виникає акустична хвиля, під впливом якої змінюється величина індексу рефракції п. Зміни п викликають розсіювання світла, приводячи до додаткової генерації акустичних хвиль. Для збудження РМБ спектральна густина початкового випромінювання повинна бути значно більшою, ніж для раманівського розсіювання - 10 мВт у смузі частот 10-50 МГц. У кінцевому рахунку, унаслідок цього ефекту, виникає хвиля зі зміщеною частотою (хвиля Стокса - Stokes), що поширюється в зворотньому напрямку до джерела світла, у результаті чого корисна передана оптична потужність послаблюється. Тим самим обмежується гранично досяжна потужність, що може бути передана передавачем у лінію. Наприклад, при довжині хвилі 1550 нм розсіяне світло зсувається вправо приблизно на 11 ГГц. Це розсіювання (SBS) має найнижчу порогову потужність. Було показано, що поріг SBS може змінюватися в залежності від типу волокна і навіть в залежності від конкретного волокна. Поріг має порядок від 5 до 10 мВт для вузькосмугових лазерів із зовнішньою модуляцією. Для лазерів з безпосередньою модуляцією ця потужність може бути порядку 20-30 мВт. Для волокон G.653 поріг SBS дещо менший, ніж для систем G.652. Це виникає завдяки меншій ефективній площі волокон типу G.653. Можна також сказати, що це справедливо для всіх нелінійних ефектів, що розглядаються. Поріг SBS чутливий до спектральної ширини джерела випромінювання і рівня випромінюваної потзокності. Одначе, він не залежить від числа каналів WDM.
Крім ефекту зниження корисної потужності виникають і шуми (підвищується відносна інтенсивність шуму - RIN, наприклад, 3-155 дБ/Гц до – 138 дБ/Гц), що погіршують характеристики BER (імовірність виникнення помилки). Особливо важливо контролювати SBS у високошвидкісних транспортних оптичних системах, обов'язково використовуючи модулятори з зовнішньою модуляцією (External modulators) і лазерні джерела безупинних коливань (CW - Continuous Wave).
Акустична хвиля, що з'являється за своєю природою є гіперзвуковою, і її частотний спектр може розташовуватися до 10...13 ТГц (1013 Гц). SBS обмежує рівень світлової енергії, що може бути передана волокном. Рівень вхідної потужності, яка подається у волокно, за якої проходить різке наростання визначається як поріг SBS та описується формулою:
де g - означає коефіцієнт підсилення Бріллюена, Аeff - ефективну площу серцевини, К - постійна, що визначається ступінню свободи стану поляризації. Для G.652 - K = 2. Змінні та представляють спектральну ширину смуги Бріллюена і джерела накачки відповідно, Leff - ефективна довжина.
Погіршення, що викликані SBS не виникнуть у системах, де ширина лінії джерела випромінювання значно перевищує ширину смуги Бріллюена, або там де потужність сигналу менша порогової потужності SBS.
Можна прийняти, що за умови перевищення теоретичного порогу (7) погіршення KSBS складе приблизно 10 дБп на канал, що абсолютно неприпустимо.
Чотирихвильове змішування (ЧХЗ) виникне, якщо в речовину ввести два сигнали з різними частотами, з достатньо великою інтенсивністю - у спектрі розсіяного сигналу будуть компоненти з чотирма частотами (з врахуванням розсіювання Релея-Мандельштама), причому у випадку накладання двох з частот одна на одну, що практично є можливим, виникають фотони з частотами, які відрізняються від несучої . Частотний спектр розсіяного випромінювання розширюється, причому деякі зі складових можуть підсилюватися за рахунок подавлення інших. При N оптичних несучих у результаті ЧХЗ кількість складових визначиться співвідношенням:
ЧХЗ може проявлятися і при одному оптичному сигналі, який переносить інформацію методом амплітудної модуляції, тобто його спектр складається з трьох основних складових: центральної частоти та бокових частот, при високих швидкостях передачі бокові частоти є сильно рознесені по відношенню до центральної, тому кожна з них є самостійною несучою з точки зору ЧХЗ. Вплив ЧХЗ на передачу проявляється як додаткові перехресні завади, міжсимвольні завади при високих швидкостях передачі, збіднення потужності сигналів одних каналів за рахунок впливу на інші.
Ефективність ЧХЗ також чутлива до загальної оптичної потужності у волокні. Наближена формула з розрахунку ефективності FWMP для SMF-28 (як найбільш частий випадок на практиці для СНД), з урахуванням частотного кроку розміщення N каналів df. може бути записана у вигляді:
Так, для 8-ми канальної CWDM із іфоком частотного розміщення в df = 200 ГГц (192,4 - 193,8 ТГц) FWMP складе ~ -46,7 дБ, а для 16-ти канального розміщення з частотним кроком у 100 ГГц FWMP складе ~ -37,7 дБ. Нагадаємо, шо електричний еквівалент FWMP дорівнює подвоєному значенню оптичної ефективності FWMP і для останнього випадку буде дорівнює -75,4 дБ.
Найбільший паразитний вплив ЧХЗ справляє на СПІ в яких оптичний тракт побудований на оптичному волокні зі зміщеною нульовою дисперсією G.653 DSF, практично не впливає при одномодовому стандартному волокні G.652 SMF. Досліди показали, що для волокон G.653 ці завади є практично неприйнятними (до 20 дБп ), тоді як для G.652 вони практично відсутні.
Для того, щоб адекватно подавляти генерацію продуктів ЧХЗ в промисловості було запропоновано використання волокна з мінімально допустимою, але ненульовою дисперсією в області підсилення оптичних підсилювачів. Як альтернатива, пропонується використання чергування прольотів з протилежними за знаками дисперсіями. Звичайно, можна забезпечувати збільшення кроку між каналами та існування нерівномірного кроку між ними, за рахунок цього зменшуючи рівень завад від ЧХЗ.
... ї потужності. У разі зменшення значення функції при деяких параметрах частоти та кількості каналів можна зробити висновок про збільшення впливу завад - збільшення відношення сигнал шум. оптична транспортна інфокомунікаційна мережа Спектральна функція передачі енергії тракту - енергетичний коефіцієнт передачі у такій інтерпретації є фактично функцією перехресних завад - перерозподілу енергії у ...
... втілення вже залежить не тільки від прогресу науково-технічної думки, але й від соціально-економічних і правових умов, в яких вони існують. 2.2 Сучасні парадигми інформатизації суспільства в умовах глобалізації Інформатизація сучасного суспільства побудована на певних законах і постулатах, які надають їм постійного явища. У різних наукових напрямах по-різному трактується сучасне інформаційне ...
... ональних інтересів та безпеку інформаційного простору. Підсумки: В цьому розділі ми з’ясували, які саме зміни всередині урядових організацій, в їх структурі, функціях і методах роботи ініціює запровадження електронного уряду. А саме: відбувається перенесення акцентів з вертикальних на горизонтальні зв’язки всередині уряду, між різними його підрозділами і гілками влади. За рахунок створення внутрі ...
... ї академії державного управління при Президентові України. – Львів, 2003. – 20 с. 11. Гэлбрейт Дж. Новое индустриальное общество. – М.: Прогресс, 1976. – 264 с. 12. Даніл’ян В.О. Глобальне інформаційне суспільство: культура і людина // Філософські обрії. Науково-теоретичний часопис Інституту філософії імені Г.С. Сковороди НАН України та Полтавського державного ...
0 комментариев