Федеральное агентство по образованию
ГОУ ВПО «Нижегородский государственный архитектурно – строительный университет»
Международный институт экономики, права и менеджмента
Кафедра информационных систем в экономике
Курсовая работа
по дисциплине: Математические методы и модели
на тему:
«Имитационное моделирование группового обслуживания с несколькими этапами и двойной очередью: работа оптового магазина»
Выполнил студент:
Чикунова Е. О.
Проверил:
Прокопенко Н. Ю.
г. Н. Новгород
2010 г.
Оглавление
Введение
1 Имитационное моделирование
2 Описание системы
2.1 Модельное время
2.2 Классы и объекты
2.3 События и методы
3 Реализация модели
3.1 Программная реализация
3.2 Построение графиков
3.2.1 Программа gnuplot
3.2.2 Использование программы для построения графиков
4 Анализ результатов
Список использованной литературы
Введение
В современном мире гарантией эффективной работы любого предприятия служит рациональное использование денежных средств и трудового фактора. Именно поэтому для расчета экономического эффекта работы оптового магазина необходимо провести имитационное моделирование на основании предварительно установленных зависимостей.
Термин имитационное моделирование означает, что речь идет о моделях с помощью, которых нельзя вычислить или предсказать результат и поэтому с их помощью проводиться вычислительный эксперимент при заданных исходных данных.
Метод имитационного моделирования дает возможность широкого использования математического аппарата и вычислительной техники для исследования хода экономических процессов.
Таким образом, сущность имитационного моделирования состоит в том, что с помощью ЭВМ воспроизводится поведение исследуемой системы, а исследователь, управляет ходом процесса и анализирует получаемые результаты. Поэтому под имитацией следует понимать численный метод проведения на ЭВМ экспериментов с алгоритмами, описывающими поведение системы и определения интересующих нас функциональных характеристик.
Целью данной курсовой работы является разработка модели группового обслуживания с несколькими этапами и двойной очередью, то есть работа оптового магазина. Основой для разработки модели в данной курсовой работе является метод имитационного моделирования. Так же курсовая работа предполагает создание программы на языке C++, обеспечивающей ввод исходной информации, ее обработку, реализацию алгоритма имитации процесса и выдачу необходимой информации.
1. Имитационное моделирование
Можно дать следующее определение понятия модель: это такое описание, которое исключает несущественные подробности и учитывает наиболее важные особенности системы. Моделирование же можно определить как методологию изучения системы путем наблюдения отклика модели на искусственно генерируемый входной поток. К. Шеннон пишет так: «Имитационное моделирование есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках ограничений, накладываемых некоторым критерием или совокупностью критериев) различные стратегии, обеспечивающие функционирование данной системы...» Имитационное моделирование является экспериментальной и прикладной методологией, имеющей следующие цели [1]:
· Описание поведения системы;
· Построение теорий и гипотез, которые могут объяснить наблюдаемое поведение;
· Использование этих теорий для предсказания будущего поведения системы, то есть тех воздействий, которые могут быть вызваны изменениями в системе или изменениями способов ее функционирования.
Авторы одной методологической работы сформулировали основные факторы, влияющие на принятие правильного решения по результатам моделирования:
· адекватное понимание решаемой задачи, т. е. если задача не полностью определена и недостаточно четко описана, очень мало шансов, что ее решение принесет какую-либо пользу. Это фундаментальное утверждение относится ко всем задачам, а не только к моделированию.
· корректная модель. Это первостепенный фактор для технически или экономически эффективного решения, если брать всю задачу в целом. Ошибки в модели, если они не выявлены, скорее всего, приведут к принятию результатов, основанных на неверной модели. Стоимость такого типа ошибок обычно очень высока. Даже если ошибка обнаружена, но это произошло на поздних этапах проекта, стоимость исправлений включает также и повторное прохождение всех предшествующих этапов.
· корректная программа. Программирование — последний этап разработки, и корректная программа может быть написана только по корректной модели. Аргументы в пользу корректности программы такие же, что и для модели.
· планирование эксперимента. Разработка модели и программы должна отражать цели, для которых выполняется моделирование. Для получения требуемых ответов программе нужно правильно задать вопросы, то есть спланировать последовательность вычислительных экспериментов с полным пониманием проблемы.
· интерпретация результатов. Никакая моделирующая программа не дает ответа со стопроцентной достоверностью. Результаты моделирования получаются на основе обработки случайных чисел, поэтому для их правильного понимания требуется применение статистических методов.
Таким образом, моделирование — это больше, чем просто программа. Достижение целей моделирования требует пристального внимания ко всем указанным факторам.
Типовая последовательность имитационного моделирования включает следующие этапы [1]:
1. Концептуальный: разработка концептуальной схемы и подготовка области исходных данных;
2. Математический: разработка математических моделей и обоснование методов моделирования;
3. Программный: выбор средств моделирования и разработка программных моделей;
4. Экспериментальный: проверка адекватности и корректировка моделей, планирование вычислительных экспериментов, непосредственно моделирование, интерпретация результатов.
Имитационное моделирование на компьютере, в принципе, позволяет проанализировать любую реальную систему произвольной сложности. Концептуально, промоделировать сложную систему так же легко, как и простую, разница будет состоять только в объеме программного кода. Имитационная модель может учесть любой нюанс в дисциплине обслуживания всего лишь путем небольшой модификации текста одной-двух процедур, а в аналитической модели это может потребовать коренной переделки всех уравнений, сделать модель необозримо сложной или оказаться вообще невозможным. Этот факт отражает как силу, так и слабость имитационной методологии. С одной стороны, имитационное моделирование даст метод анализа, применимый в тех случаях, когда математическая модель чрезмерно сложна и позволяет аналитику получить более точные результаты. Но с другой стороны, имитационная модель не позволяет глубоко заглянуть в сущность системы, выявить ее «изюминки» и законы, по которым она живет, построить качественные зависимости между «входом» и «выходом», как это позволяет сделать математическая модель, если ее, конечно, удалось решить. То, что при взгляде на математический результат видно сразу, при имитационном моделировании может быть выявлено только в результате постановки значительного количества экспериментов (еще говорят «прогонов»)[1].
Главная и наиболее очевидная цель имитационного моделирования — выяснить, как повлияют на производительность отдельные изменения конфигурации системы или увеличение нагрузки на нее. Процесс моделирования включает три фазы. На фазе валидации строится базовая модель существующей системы, проверяются и обосновываются предположения, лежащие в ее основе. На фазе проектирования модель используется в прогностических целях для предсказания влияния различных модификаций на производительность. На фазе верификации реальная производительность модифицированной системы сравнивается с результатами моделирования. Взятые вместе, эти три фазы образуют модельный цикл [1].
Фаза валидации.
Начинается с описания модели и включает выбор тех ресурсов и элементов деятельности, которые будут представлены; выявление особенностей системы, которые требуют внимания; выбор структуры модели; процедуры расчета необходимых показателей по результатам имитационного эксперимента.
Далее в реально функционирующей системе проводятся замеры входных параметров, которые послужат рабочим материалом для модели, а также замеры производительности, результаты которых будут сравниваться с выходными данными модели для оценки ее точности. Модель проверяется, в результате чего может потребоваться внести в нее изменения. Значимые различия между выходными данными системы и модели свидетельствуют об изъянах модели - какое-то допущение оказалось некорректным, какие-то факторы проигнорированы неправомерно. Но и отсутствие таких различий еще не гарантирует того, что модель сумеет правильно предвидеть влияние количественных и качественных изменений в системе.
Фаза проектирования.
На этой фазе входные параметры меняются в соответствии с модификацией системы, эффективность которой нужно проверить с помощью модели. Это довольно сложный и ответственный процесс, ведь необходимо правильно сформулировать вопрос дли модели. Результаты затем анализируются, их отличия от выходных данных исходной модели и представляют собой эффект от модификации системы.
Фаза верификации.
На фазе верификации измерения снимаются с обновленной системы, и снова проводится сравнение. Производительность системы сравнивается с данными моделирования. Наблюдаемые различия могут объясняться двумя причинами:
· либо при составлении модели упущены некоторые ее свойства, что дает о себе знать не всегда, а лишь при стечении определенных обстоятельств;
· либо система отреагировала на изменения совсем не так, как прогнозировалось в модели.
Кроме того, точность выходных данных модели не может быть лучше точности, с которой заданы входные параметры.
Модельный цикл отнюдь не является строго последовательным процессом. Между отдельными составляющими фаз валидации и проектирования могут существовать жесткие зависимости. Может потребоваться совместимость между описанием модели, замерами данных и методикой оценки модели. Достижение такой совместимости и ее согласование с конкретными целями моделирования являются по своей сущности процессами итерационными.[1]
... по модели Y, личные выгоды сотрудников должны быть увязаны с достигнутыми результатами. Такая политика связана с вопросами мотивации. О механизмах мотивации персонала к труду будет сказано в разделе «Анализ финансовой политики в управлении трудовыми ресурсами». Следует учёсть, что для достижения успеха в бизнесе бюджет не должен быть чрезмерно завышенным или слишком простым. Обе крайности ...
... . В целом маркетинговая информационная система дает множество преимуществ: * организованный сбор информации; * избежание кризисов; * координация плана маркетинга; * скорость; * результаты, выражаемые в количественном виде; * анализ издержек и прибыли. Однако создание маркетинговой информационной системы может быть ...
... СУБД; можно управлять распределением областей внешней памяти, контролировать доступ пользователей к БД и т.д. в масштабах индивидуальной системы, масштабах ограниченного предприятия или масштабах реальной корпоративной сети. В целом, набор серверных продуктов одиннадцатого выпуска компании Sybase представляет собой основательный, хорошо продуманный комплект инструментов, которые можно ...
... объектов; б) наличие данных за предыдущий период; в) наличие базисных данных; г) сопоставимость данных. 26. По характеру принимаемых решений экономический анализ подразделяется: а) предварительный, текущий и заключительный б) оперативный, ретроспективный и перспективный в) предварительный, последующий и итоговый 27. Информация, ...
0 комментариев