Полное ускорение : , Ответ: тангенциальное ускорение , нормальное ускорение , полное ускорение . Тело движется вдоль прямой, замедляясь при . В начальной точке скорость была . Какой путь пройдет тело до остановки.
Мгновенная скорость , следовательно
Мгновенное ускорение , следовательно
Получаем равенство
Проинтегрируем равенство Ответ: тело пройдет путь равный На брусок массой , лежащий на гладкой горизонтальной поверхности, действует сила . При прямолинейном движении угол между силой и горизонтом изменяется по закону , где - постоянная. Найти скорость бруска как функцию от .Уравнение движения в проекции имеет вид
Заменим в уравнении , тогда
Ответ: скорость бруска равна
Конькобежец массой кг, стоя на коньках на льду, толкает камень кг под углом 30° к горизонту со скоростью . Найти начальную скорость движения конькобежца.
Импульс и закон сохранения импульса
; ;
Перед броском все тела находились в покое: импульс каждого из них был равен 0, равнялась 0 и их векторная сумма
В конце броска импульс груза равен , конькобежца -
В проекции на ось Ox импульс груза равен , конькобежца - .
т.к. , то
.
Ответ: ;
Тело массой начинает двигаться вдоль оси со скоростью , где - перемещение. Найти выражение для работы и вычислить работу при кг за 3с движения.
Найдем ускорение как производную от скорости
; ;
Ускорение постоянно, значит движение равноускоренное. Зависимость скорости от времени.
Через 3с скорость будет:
Работа равна изменению кинетической энергии. Т.к. в начале тело находилось в состоянии покоя:
; кДж
Ответ: , ;
Диск массой 10 кг и радиусом 20 см вращается относительно оси симметрии под действием момента сил М = 1,8t2. Найти угловую скорость колеса через 3 с после начала движения.
Момент инерции диска вычисляется по формуле
;
Основной закон динамики вращательного движения
Проинтегрируем выражение по :
Т.к. , то
Через 3с угловая скорость будет
Ответ:
Найти момент инерции стержни сечением S и плотностью р = p0(1-r/l), где l - длина, r - расстояние до оси вращения, проходящей черев конец стержня. Вычислить при р = 7800 кг/м3, S = 2 см2 и I= 80 см.
Выделим бесконечно тонкий участок стержня толщиной . Его момент инерции:
,
где - масса участка.
Т.к. момент инерции аддитивен, момент инерции всего стержня равен сумме моментов инерции всех его участков.
Ответ:
На скамье Жуковского I = 50 кг-м2 стоит человек и держит в руках колесо, момент инерции которого 0,25 кг-м2 и скорость вращения 25 рад/с. Ось колеса совпадает с осью скамьи. Найти угловую скорость вращения скамьи и работу внешних сил, если колесо расположить горизонтально.
Когда колесо повернули горизонтально, момент импульса вокруг вертикальной оси сохранился. То есть
,
где - момент инерции колеса, - угловая скорость скамьи, - угловая скорость колеса.
Скамья начала вращаться с угловой скоростью
,
Скорость и энергия внешних сил колеса почти не изменилась. Работа внешних сил пошла на изменение энергии вращения скамьи и равна:
,
Ответ: , .
Колебания точки происходят по закону х = Acos(w t+j ). В некоторый момент времени смещение точки равно 5 см, ее скорость V = 20 см/с и ускорение а = - 80 см/с2. Найти амплитуду А. циклическую частоту w , период колебаний Т и фазу (w t+j ) в рассматриваемый момент времени.Запишем закон движения и его производные:
(1),
(2),
(3).
Подставив и в (3), найдем :
,
Преобразуем формулу (2) следующим образом:
(2’).
Возведем в квадрат (1) и (2’) и сложим:
см
Период колебаний с.
Найдем фазу: ,
Что соответствует точке на окружности с углом -
Ответ: см, , с, .
Уравнение колебаний частицы массой 1.6-10 -2 кг имеет вид х = 0,lsin(p t/8 + л/4) (м). Построить график зависимости от времени силы F, действующей на частицу. Найти значение максимальной силы.
Найдем ускорение как вторую производную по :
Произведение ускорения на массу даст силу:
,
Значение максимальной силы при
График – синусоида с периодом 16 и смещенная на 2 влево.
Диск радиусом 20 см колеблется около горизонтальной оси, походящей через середину радиуса перпендикулярно плоскости диска. Определить приведенную длину и период колебаний.
Пусть диск повернулся на малый угол , тогда возвращающий момент сил:
, где - плечо силы.
Момент инерции диска относительно центра:
относительно оси вращения:
Тогда уравнение движения имеет вид:
или
Это уравнение колебаний с частотой:
У математического маятника
Значит приведенная длина:
, м.
Период колебаний:
Ответ: , .
Определить скорость, если разность фаз D j колебаний двух точек среды, отстоящих друг от друга на D x = 10 см, равна p /З. Частота колебаний равна 25 Гц.
Отношение разности фаз к расстоянию между точками есть волновое число
, - длина волны.
Выразим частоту:
,
где - скорость распространения.
Ответ: .
При изменении давления газа на 200 Па объем газа изменится на 3 л. Если давление изменить на 500 Па, объем изменится на 5 л. Найти начальный объем и давление гaзa. Температура газа сохраняется постоянной.
Используем, что при . Тогда
.
Аналогично для (2)
Выразим из (1) и подставим в (2).
, отсюда .
При и положительных мы не знаем, когда газ сжимается, а когда расширяется. Поэтому выберем все величины отрицательными.
Тогда л. Подставив в формулу для , получим Па.
В обоих случаях газ сжимали.
Ответ: , Па.
Найти с помощью распределения Максвелла <V2x> среднее значение квадрата проекции скорости молекулы газа при температуре Т.
Распределение Максвелла по проекциям:
Среднее значение квадрата проекции ищем по формуле:
Введем новую переменную
, ,
- табличный интеграл.
Ответ: .
Найти работу, совершающуюся при изотермическом расширении водорода массой 5 г, при температуре 290°К. при увеличении объема газа в три раза.
Количество водорода моль.
- при расширении от до .
кДж.
Ответ: кДж.
Во сколько раз увеличится КПД цикла Карно при увеличении температуры нагревателя от t1 = 300°К до T 2 = 380 К при температуре холодильника T2 = 200°К?
КПД находим по формуле
,
где - температура нагревателя, а - температура холодильника.
- во столько раз увеличивается КПД.
Ответ: 1,42.
Похожие работы
... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...
... самопроизвольно протекать не может, необходим подвод энергии извне. 2-й закон термодинамики с использованием понятия энтропии формулируется так: Все процессы в природе протекают в направлении увеличения энтропии, энтропия замкнутой системы не может самопроизвольно уменьшаться. В статистической физике энтропию связывают с термодинамической вероятностью состояния системы – с числом ...
... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...
т вследствие уменьшения момента инерции при сохранении момента вращения. Тут мы и убеждаемся наглядно, что чем меньше момент инерции, тем выше угловая скорость и, как следствие, короче период вращения, обратно пропорциональный ей. 3. Что такое радиоактивность (естественная и искусственная)? Как использование явлений радиоактивности позволило осуществить мечту алхимиков? Радиоактивность (от ...
0 комментариев