4. Сравнение магнетронов и гиротронов

Как и в др. классических СВЧ генераторах, в МЦР преобразование энергии стационарного электронного пучка в излучение оказывается возможным благодаря группировке частиц полем "затравочной" волны. Образующиеся электронные сгустки усиливают первичную волну (циклотронная неустойчивость). Такой индуцированный процесс происходит в МЦР вследствие: 1) зависимости w, от энергии электрона (неизохронность вращения), которая приводит к азимутальной группировке частиц, меняющих свою энергию в процессе взаимодействия с волной; 2) различия поступательных смещений, которые приобретают электроны, попавшие в разные фазы пространственно неоднородной волны; этот механизм приводит к продольной (вдоль H0) группировке частиц.

При переходе к релятивистским энергиям электронов эффективность гиротрона уменьшается вследствие слишком большой неизохронности вращения частиц, приводящей к их быстрому выходу из резонанса. Поэтому в релятивистской области энергий с гиротроном начинает конкурировать др. разновидность МЦР, в которой фазовая скорость волны близка к с и изменение wс компенсируется соответствующим изменением доплеровской поправки (авторезонанс). В таком МЦР частота генерации может во много раз превышать wс (режим лазера на свободных электронах).

Основным достоинством гиротронов является возможность достижения высокого уровня мощности в миллиметровом и субмиллиметровом диапазонах длин волн. Работа на высоком уровне мощности требует развитого пространства взаимодействия, однако при этом возникает необходимость селективного возбуждения рабочего типа колебаний, т.е. проблема конкуренции мод в сверхразмерных резонаторах, представляющих собой систему с числом степеней свободы, равным количеству возбуждаемых мод.

Магнетроны могут быть сделаны большого размера, и тогда они дают мощные импульсы СВЧ-энергии. Но у магнетрона имеются свои недостатки. Например, резонаторы для очень высоких частот становятся столь малыми, что их трудно изготавливать, а сам такой магнетрон из-за своих малых размеров не может быть достаточно мощным. Кроме того, для магнетрона нужен тяжелый магнит, причем требуемая масса магнита возрастает с увеличением мощности прибора. Поэтому для самолетных бортовых установок мощные магнетроны не подходят.


5. Применение

Магнетроны:

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

В РЛС находят применение коаксиальные магнетроны (КМ) с быстрой перестройкой частоты, что расширяет тактико-технические возможности РЛС.


magnetron11.jpg

Гиротроны:

Гиротроны позволили освоить весь диапазон миллиметровых волн на высоких уровнях мощности (~1 МВт в импульсном и сотни кВт в непрерывном режимах) с кпд ~ 30-40%. Это делает их перспективными для ряда энергетических приложений, в частности для нагрева плазмы в установках управляемого термоядерного синтеза.

Современные мощные гиротроны для термоядерных исследований способны генерировать на частотах 30–170 ГГц излучение мощностью до 1 МВт с КПД 40–50 % в импульсах длительностью до сотен секунд. Эти уникальные параметры обеспечиваются формированием мощного электронного потока с винтовыми траекториями частиц в сильном магнитном поле и использованием сверхразмерных цилиндрических резонаторов с очень высокими рабочими модами (например, ТЕ25.10.1). Наиболее мощные гиротроны оснащены искусственными алмазными выходными окнами, высокоэффективными квазиоптическими преобразователями рабочей моды в параксиальный волновой пучок и системами рекуперации остаточной энергии электронного пучка. Вследствие исключительно высокой теплопроводности и очень малых диэлектрических потерь алмазные окна гиротронов способны пропускать СВЧ-излучение с мощностью более 1 МВт. Прогресс в разработке численных методов анализа и синтеза многомодовых электродинамических систем позволил в последние годы довести эффективность преобразования рабочих мод высших типов в гауссовы волновые пучки до очень высоких значений 97–98 %, что необходимо для работы прибора с большой непрерывной мощностью. Использование в гиротронах коллекторов с рекуперацией не просто повышает КПД, но и принципиально упрощает реализацию источников питания и системы охлаждения коллекторов. В экспериментах уже продемонстрированы принципиальные возможности получения с помощью гиротронов еще большей непрерывной мощности (1,5–2 МВт) и более высокого (60–70 %) КПД. Для исследований импульсного теплового воздействия СВЧ-излучения на металлические структуры разработан релятивистский гиротрон с мощностью 10 МВт в импульсах длительностью 1–2 мкс при КПД 50 %.

Другим важным направлением в развитии гиротронов для УТС является исследование и разработка мегаваттных приборов с возможностью ступенчатой перестройки частоты. Использование таких гиротронов в плазменных установках УТС могло бы существенно повысить эффективность систем электронно-циклотронных волн, а также упростить антенные системы установок.


Информация о работе «Магнетроны и гиротроны»
Раздел: Физика
Количество знаков с пробелами: 18792
Количество таблиц: 0
Количество изображений: 7

0 комментариев


Наверх