5.10 Запорная арматура системы управления
Трубопроводная арматура (вентили, обратные клапаны) представляют собой устройства, предназначенные для управления потоками газа, транспортируемого по трубопроводам, отключения одного участка трубопровода от другого, включения и отключения технологических установок, аппаратов, сосудов и т.д.
К характерным особенностям работы запорной арматуры на КУ относятся: высокое давление транспортируемого газа (до 7,5 МПа), относительно высокая температура газа на выходе КС (60-130°С), наличие в составе газа механических примесей и компонентов, вызывающих коррозию, эрозию металла и т.д.
К запорной арматуре предъявляются основные требования: обеспечивать герметичное отключение отдельных участков газопровода, сосудов, аппаратов от технологических газопроводов и длительное время сохранять эту герметичность, иметь высокую работоспособность, быть коррозионно-стойкой и взрывобезопасной.
На КУ применяется запорная арматура различного типа, но для нашей системы будем использовать клапана компании EMERSON Process Management. Возможность использования клапанами коммуникационных протоколов Fieldbus позволяет применять их в составе нашей систем автоматизации.
Клапан конструкции GX
Регулирующий клапан конструкции GX предназначен для управления потоком среды (регулирование или отсекание) и представляет собой односедельный клапан с направлением потока вверх, с ввинчиваемым седлом, с одним из трех типов трима (комплекта внутренних деталей): с направляющей по штоку, с направляющим седлом или с разгруженным плунжером. Привод пневматический (МИМ) с несколькими пружинами.
Для клапана каждого размера возможно исполнение с неразгруженным плунжером, которое исключает "мертвые зоны", с возникающей в них полимеризацией рабочей среды. Полно поточный трим и трим с ограниченной пропускной способностью могут иметь как линейную, так и равно процентную характеристику потока.
Ниже перечислены факторы, на основе которых был сделан выбор данного оборудования:
־ стабильность потока через тракт клапана;
־ полный спектр материалов, включая сплавы;
־ исполнения с высокой пропускной способностью;
־ высокая унификация деталей для всех типоразмеров;
־ заменяемый комплект внутренних деталей (трим);
־ реверсируемый в полевых условиях привод;
־ простота технического обслуживания.
Общий вид данного класса представлен на Рис. 5.19.
Рис. 5.19
5.11 Программная реализация обеспечения для контроля и управления
Программное обеспечение для контроля и управления DeltaV поддерживает разработку управляющих стратегий с помощью языков, соответствующих стандарту IEC 61131-3, а также функциональных блоков FOUNDATION fieldbus. Компоновка и изменение этих стратегий производится в графическом режиме. Визуальная разработка стратегий интуитивно понятна, что помогает начинающим пользователям быстро добиться результатов. Языки управления IEC 61131-3, включают в себя Диаграммы функциональных блоков (ДФБ), Диаграммы функциональных последовательностей (ДФП) и структурированный текст (СТ), на основе которых реализуются системы практически любой сложности.
Диаграммы функциональных блоков (ДФБ)
Диаграммы функциональных блоков используются в DeltaV для реализации непрерывно выполняемых вычислений, контроля процесса и стратегий управления. Различные блоки на диаграмме соединяются графическими «проводами». По каждому «проводу» передается один или несколько блоков данных. Весь обмен данными в системе DeltaV выполняется автоматически. Функциональные блоки DeltaV реализованы в соответствии со стандартом FOUNDATION fieldbus, однако расширены и дополнены для большей гибкости при разработке стратегий управления. Совместимые со стандартом полевой шины функциональные блоки позволяют реализовать распределенное управление в полевых приборах.
Структурированный текст (СТ)
С помощью структурированного текста вы можете писать программы сложных расчетов, используя широкий набор алгебраических и тригонометрических функций и операторов. Кроме того, вы можете составлять сложные логические выражения, используя условные и итерационные структуры.
Сбор данных
Отображение, построение трендов, генерация алармов и использование внешних данных таким же образом, как и собственной информации в/в DeltaV. Все приложения DeltaV могут получать доступ к внешним данным, как к собственной информации DeltaV. В процессе выполнения механизм оповещения об исключительных ситуациях передает данные в соответствующее системное приложение. База данных глобальной конфигурации делает управление этими данными и их использование очень простым.
5.11.1 Разработка алгоритмов
Система DeltaV использует параметры в функциональных блоках, модулях, конфигурации Вв/Выв и диагностических функциях. Параметры обеспечивают пользователя значениями переменных, которые являются определенными константами различных приложений и могут описывать эти приложения. Это позволяет пользователю конфигурировать логику в блоке или модуле, читать или писать по конкретным адресам Вв/Выв или диагностировать неисправности системы.
В системе DeltaV используется модульный принцип при разработке стратегии управления. Управляющие модули являются уникальными поименованными управляющими единицами в системе DeltaV. Функциональный блок – это основной компонент управляющего модуля, то есть, это блок, из которых строится управляющий модуль. Каждый функциональный блок содержит в себе управляющий алгоритм (такой, как ПИД, Аналоговый Выход или Аналоговый Вход). Алгоритмы Усовершенствованного Управления процессом также включены в функциональные блоки, например, регулирование с функцией Нечеткой логики. Будучи соединенными вместе в определенной последовательности, несколько функциональных блоков образуют управляющий модуль.
Принцип действия управляющих модулей КУ будет основываться на алгоритмах, описанных в п. 2.3.
Кроме этого, необходимо разработать четкий механизм событий и алармов, согласно которым и будет производится управление и поддержание процесса на необходимом уровне.
Событие – есть важное изменение состояния во время выполнения управляющего процесса. Событие может быть зарегистрировано или использовано для оповещения оператора.
Система DeltaV позволяет создавать уставки (пределы) алармов для функциональных блоков и управляющих модулей. Эти уставки можно использовать для создания звуковой или визуальной сигнализации об аларме для оператора.
Система DeltaV поддерживает и контролирует большое число типов системных и определенных пользователем событий, которые регистрируются в Журнале Событий. Алармы являются специальным типом событий, а именно такие, которые оператор видит в приложении Интерфейс Оператора.
Система DeltaV поддерживает предопределенные (стандартные) алармы, а также алармы, определенные пользователем.
Алармы, определенные пользователем, поддерживаются как для уровня функциональных блоков, так и для уровня модулей (за исключением модулей аппаратов и модулей фазовой логики). Алармы пользователя ссылаются на существующие параметры или выражения, определенные пользователем. Настройка алармов выполняется простым выбором из списка вариантов.
Основные события, протекающие в системе, относятся к состоянию параметров регулируемых величин, т.е. рабочий диапазон, состояние объекта регулирования, события самодиагностики, критичные пределы и авария. Пределы аварийных сигналов формируются на основе нормативных данных регламента всего комплекса гидроочистки. Перечень блокировок и сигнализаций, соответствующий данному регламенту, представлен в таблице 1.3.
Однако каждый Аларм предусматривает взаимодействие нескольких параметров, которые определяют логику включения предупреждения, а затем и перевод системы в другое состояние. Принципиальная схема построения логики предупреждений представлена на Рис. 2.1. Важно отметить, что при срабатывании блокировки по определенному параметру, система запоминает его и предоставляет оператору возможность либо с квитировать его, либо записать в историю процесса для последующего анализа.
Кроме основного алгоритма функционирования система включает в себя малые подпрограммы, реализующие стандартные процедуры:
־ Временные параметры опроса датчиков (см. п. 2.4);
־ Регуляторы температуры;
־ Регуляторы давления;
־ Включения резервного оборудования, в зависимости от процедурного состояния;
־ Самодиагностика сети и оборудования, переключение питающих сетей;
־ Регулирование приводным двигателем компрессора, с подачей сигнала на управляющий блок.
6. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ 6.1 Пути снижения затрат за счет внедрения системы
Внедрение автоматической системы управления компрессорной установкой комплекса гидроочистки моторного топлива решает следующие задачи
- Полностью автоматическая система управления компрессорной установкой не требует участия человека в ее рабочем цикле, вследствие чего происходит высвобождение рабочих занятых на Л-24/6 (установка гидроочистки моторного топлива);
- Снижение частоты и трудоемкости обслуживания;
- Повышение надежности системы управления.
- Уменьшение время простоя связанного с технологическим обслуживанием.
Специфика работы Л-24/6 (установка гидроочистки моторного топлива) предусматривает непрерывный цикл производства. Без функционирования КУ невозможна работа всего комплекса в целом, а простой Л-24/6 в течение суток приносит убытки в сумме более 1000000 рублей по причине не выработки сырья. По этому снижение периодичности обслуживания КУ и ее отказоустойчивость способно снизить убытки, возникающие по причине простоя оборудования.
В широко развитой нефтеперерабатывающей отрасли техническое развитие стоит на одном из первых мест, которому уделяют особое внимание, т.к. владельцы сами заинтересованы в повышение энергоемкости своих предприятий. В виду чего, весь механизм работы построен на принципе высоко организованной автоматической системы, где каждый узел имеет свои правила-нормы оперативного контроля.
Как показывает многолетняя практика эксплуатации компрессорных установок, аварийная остановка КУ, связанная с малой технической оснащенностью, отсутствия самодиагностики оборудования и низким критическим порогом обнаружения отклонений, возникает 4-6 раз в году, при этом простой составляет от 4 до 24 часов. Для скорейшего восстановления работоспособности КУ требует постоянное присутствие ремонтного персонала на установке. А это очень дорого обходится, так как персонал практически не задействован, ведь проведения обслуживания механизмов производится в установленное время и требует не более 400 часов рабочего времени в год. Упрощение обслуживания и применение функций самодиагностики позволяют быстро выявлять причину отказа, а модульный принцип построения заменять неисправные компоненты системы. Применение системы раннего оповещения о возникающих неполадках позволяет своевременно их устранить и не останавливать КУ по причине аварии.
До внедрения АСУ, оператору приходилось периодически контролировать работу установки и производить корректировку ее изменений. Неисправности выявлялись специально подготовленным специалистом в течении длительного времени, и устранялись как правило в течение суток. Неисправность определялась, как правило, после аварийной остановки КУ. Не возможно было диагностировать неполадки (только отклонения норм от технических параметров) во время работы системы управления. Требовалось содержать ремонтную бригаду и нескольких операторов.
Теперь же весь контроль работы КУ, производится с центрального пульта управления КУ или щита пульта управления, расположенного непосредственно в КС, причем при наступлении предаварийной ситуации оператор своевременно информируется, что позволяет ему устранить неполадку, диагностика была произведена системой управления до наступления аварийной ситуации. Что позволяет уменьшить количество персонала задействованного для управления КУ и ее ремонта. Для обслуживания нескольких КУ может быть создана одна бригада ремонтников, которая обслуживала бы несколько станций.
Управление компрессорной установкой требовало постоянное присутствие на станции, как минимум одного оператора, который бы контролировал работу КУ и обслуживал ее.
Такой подход позволяет централизовано получать и обрабатывать всю информацию о работе станции одним человеком, что повышает качество принимаемых им управляющих решений.
6.2 Технико-экономические показатели эффективности от внедрения новой системы автоматизацииВ условиях бурного развития техники важным является вопрос о соответствии внедренного оборудования на предприятии улучшенным нормам и показаниям работы оборудования. Поэтому необходим точный расчет затрат на покупку и монтаж предлагаемого на рынке оборудования, что позволит сделать правильный его выбор.
6.2.1 Экономия в заработной плате высвобождаемых рабочихВ нашем случае происходит высвобождение 1 оператора и 6 обслуживающего персонала АСУ (КиПА – 2; Электронщики – 2; Наладчики - 2).
Среднегодовая заработная плата оператора составляет 39240 руб. (3270 руб *12).
Среднегодовая заработная плата КиПА составляет 47088 руб. (3924руб.*12)
Среднегодовая заработная плата Электронщик составляет 73260 руб. (6105руб.*12)
Среднегодовая заработная плата Наладчика составляет 31392 руб. (2616руб.*12)
Экономию в заработной плате высвобождаемых в результате внедрения АСУ ТП работников можно определить по формуле:
Зосв = k1k2k3 ּЗср.р. ּ Nосв.р.; (6.1)
где k1k4 – коэффициенты премиальной надбавки соответственно для рабочих и инженерно-технических работников (ИТР), равны 1,4;
k2 – коэффициент, учитывающий дополнительную зарплату, равен 1,2;
k3 – коэффициент отчислений на социальное страхование, равен 1,356;
Зср.р. – средняя годовая заработная плата высвобождаемых рабочих;
Nосв.р – число высвобождаемых рабочих, 7;
ЗОСВ.ОПЕР = 1,4*1,2*1,365*39240*1 = 89985.168 руб;
ЗОСВ.КиПА = 1,4*1,2*1,365*47088*2 = 215964.4 руб;
ЗОСВ.ЭЛЕКТ = 1,4*1,2*1,365*73260*2 = 335999.66 руб;
ЗОСВ.НАЛАД = 1,4*1,2*1,365*31392*2 = 143976.27 руб;
ЗОСВ.ОБЩ = 785925.5 руб.
Годовая экономия по заработной плате составляет 785925.5 руб.
6.2.2 Расчет стоимости оборудованияСтоимость оборудования, а также амортизационные отчисления на данное оборудование представлены в таблице 6.1.
6.2.3 Годовые затраты на ремонтные работыГодовые затраты на ремонтные работы КУ (комплекса технических средств) АСУ ТП рассчитываются по формуле:
; (6.2)
где kC – средний коэффициент сложности ремонтных работ для данного оборудования %;
CТКС – стоимость оборудования руб.
руб.
Годовые затраты на ремонтные работы КТС составляют 8527.35 руб.
Таблица 6.1
Наименование | Число единиц, шт | Стоимость единицы, руб. | Всего, руб. | Срок службы, лет | Норма амортизации, % | Сумма амортизационных отчислений, руб. | Потребляемая мощность, кВт | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||
До | После | До | После | До | После | До | После | До | После | ||||
Датчик температуры (подшипника) | 1 | 18600 | 18600 | 4 | 25 | 5115 | 0.0012 | ||||||
Датчик температуры (масла) | 1 | 1440 | 1440 | 8 | 12.5 | 198 | 0.002 | ||||||
Датчик температуры (двигателя) | 1 | 18600 | 18600 | 4 | 25 | 5115 | 0.0012 | ||||||
Контроллер(min сборка) | 1 | 1 | 120000 | 340000 | 120000 | 340000 | 18 | 5.6 | 7392 | 20944 | 0.032 | 0.03 | |
Датчик вибрации | 1 | 1200 | 1200 | 12 | 8.3 | 109.56 | 0.0012 | ||||||
Датчик осевого сдвига | 2 | 3000 | 6000 | 8 | 12.5 | 825 | 0.002 | ||||||
Датчик давления газа | 2 | 2 | 26860 | 32670 | 53720 | 65340 | 8 | 12.5 | 7386.5 | 8984.25 | 0.021 | 0.04 | |
Датчик перепада давления | 1 | 1 | 27340 | 35810 | 27340 | 35810 | 8 | 12.5 | 3759.25 | 4923.875 | 0.021 | 0.02 | |
Датчик давления воды | 1 | 8400 | 8400 | 6 | 16.7 | 1543.08 | 0.012 | ||||||
Датчик давления масла | 1 | 1 | 7100 | 9200 | 7100 | 9200 | 8 | 12.5 | 976.25 | 1265 | 0.002 | 0.012 | |
Датчик давления масла (резерв) | 1 | 9200 | 9200 | 8 | 12.5 | 1265 | 0.012 | ||||||
Датчик давления воздуха | 1 | 9200 | 9200 | 8 | 12.5 | 1265 | 0.012 | ||||||
Датчик давления обдува ЭД | 1 | 1 | 7100 | 9200 | 7100 | 9200 | 8 | 12.5 | 976.25 | 1265 | 0.002 | 0.012 | |
Устройство плавного пуска | 1 | 7100 | 7100 | 16 | 6.25 | 488.125 | 4.8 | ||||||
Электромагнитная задвижка | 3 | 6 | 2200 | 2200 | 6600 | 13200 | 7.6 | 13.16 | 955.416 | 1910.932 | 18.75 | 38.4 | |
ИТОГО | 9 | 22 | 221860 | 552490 | 21445.66 | 55216.722 | 18.79 | 43.3 | |||||
Комплект ЭД | 1 | 1 | 160000 | 160000 | 18 | 5.6 | 9856 | 840 | 840 | ||||
Комплекс маслонасосов | 1 | 2 | 18000 | 16000 | 18000 | 16000 | 12 | 8.3 | 1643.4 | 1460.8 | 360 | 382 | |
Холодильная установка | 1 | 1 | 12000 | 12000 | 8 | 12.5 | 1650 | 240 | 240 | ||||
ИТОГО | 3 | 4 | 190000 | 16000 | 13149.4 | 1460.8 | 1440 | 1462 | |||||
Всего по КУ | 12 | 26 | 411860 | 568490 | 34595.06 | 56677.522 | 1458.79 | 1505.3 | |||||
Годовые затраты на эксплуатацию КТС (комплекса технических средств) АСУ ТП рассчитываются по формуле:
; (6.5)
где - годовая заработная плата рабочих, обслуживающих КТС АСУ ТП;
Среднегодовая заработная плата оператора составляет 39240 руб. (3270 руб *12).
Среднегодовая заработная плата сотрудника малой группы обслуживания (МГО) составляет 83725.8 руб. (6977руб.*12)
Среднегодовая заработная плата Программиста составляет 94191.5 руб. (7849.3руб.*12)
ЗАТК = k1k2k3*Зср*NРАБ; (6.6)
ЗОПЕР = 1,4*1,2*1,365*39240*1 = 89985.168 руб;
ЗМГО = 1,4*1,2*1,365*83725.8*3 = 576000 руб;
ЗПРОГ = 1,4*1,2*1,365*94191.5*1 = 216000 руб;
ЗАТК.ОБЩ = 881985.2 руб.
- годовые амортизационные отчисления, равны 56677.5 руб.;
- годовые затраты на ремонтные работы КТС, равны 8527.35 руб.;
- годовые затраты на электроэнергию потребляемую КТС, равны 3163008.6 руб.
руб.
Годовые затраты на эксплуатацию технических средств составляют 4110198.65 руб.
6.2.5 Годовые затраты на электроэнергиюГодовые затраты на электроэнергию, потребляемую КТС (комплекса технических средств) АСУ ТП, рассчитываются по формуле:
; (6.7)
- максимальная мощность внедряемого комплекса, равна 1505.3 кВт;
- коэффициент определяющий среднюю потребляемую мощность, равен 0.76.
- стоимость 1 кВт-ч электроэнергии, равно 0.4 руб.;
- коэффициент берется в зависимости от количества смен работы линии, в моем случае 2 смены, равен 1.8;
- количество рабочих часов в году, равно 3840.
руб.
Годовые затраты на электроэнергию потребляемую КУ составляют 3163008.6 руб.
6.2.6 Годовые амортизационные отчисления на оборудованиеГодовые амортизационные отчисления рассчитываются по формуле:
; (6.8)
Рассчитаем амортизационные отчисления для датчика температуры (подшипника):
руб
где - средний коэффициент амортизационных отчислений;
- коэффициент, учитывающий расходы на транспортировку, монтаж и наладку оборудования, равен 0,1;
- стоимость единицы оборудования, равна 18600 руб.
Аналогично рассчитываем амортизационные отчисления для каждой единицы оборудования.
Расчетные данные для всех компонентов системы, представлены в Таблице 6.1.
Годовые амортизационные отчисления равны:
;
Подтверждение расчетов можно проверить, исходя из следующей формулы:
(6.9)
где n – обозначение единицы оборудования, согласно таблице 6.1
Годовые амортизационные отчисления на установленное оборудование составляют 56677.5 руб.
6.2.7 Экономический эффект за счет уменьшения количества отказов КУИзвестно, что среднее годовое время простоя Л-24/6 (установка гидроочистки моторного топлива), в связи с отказом САУ КУ традиционного типа составляет Tпрост = 52 часов. Разработанная система должна простаивать как минимум на 60% меньше. И время простоя для нее составляет менее 21 часа год. В расчетах будем использовать среднегодовую выработку КУ. Получаем дополнительное время работы КУ 31 часа в год. Это связано с большей надежностью разработанной системы управления КУ. Следовательно, зная стоимость одного руб/м3 производимого КУ аКУ = 0.034 руб/м3. И среднегодовой коэффициент загрузки станции Кз (0.8) можно посчитать экономическую выгоду от повышения надежности КУ. Рассчитаем ее по формуле:
; (6.10)
где, VГОД.П2 – годовая выработка сжатого воздуха компрессорной станцией с учетом уменьшения часов простоя:
VГОД.П2 = VКС*k*t*3600 = 11*0.8*(3840 + 21)*3600 = 122316480 м3;
руб.; (6.11)
где, VГОД = VКС*k*t*3600 = 11*0.8*3840*3600 = 121651200 м3;
VКС – производительность компрессорной станции, м3/с;
k – коэффициент неравномерности;
t - число рабочих часов установки
руб.;
Годовая экономия за счет уменьшения количества отказов составляет 3327008.3 руб.
6.2.8 Экономический эффект за счет уменьшения сроков ремонтных работУменьшение трудоемкости обслуживания сокращает сроки проведения плановых ТО. При ежегодном проведении работ по обслуживанию затрачивается на 42 часов меньше времени, чем с традиционной системой управления КУ. Это связано с уменьшением числа объектов, требующих обслуживание и упрощение его проведения, а также система предотвращения вхождения КУ в аварийное состояние – предотвращение поломки и сроков проведения капитальных ремонтов.
Годовая экономия за счет уменьшения объема ремонтных работ можно рассматривать как появление дополнительного рабочего времени, при котором КУ будет вырабатывать газ. Определяется по формуле:
; (6.12)
где, Кз – коэффициент средней годовой загрузки КУ 0.8;
VГОД.П1 – годовая выработка сжатого воздуха компрессорной станцией с учетом сокращения сроков ремонтных работ, м3.
VГОД.П1 = VКС*k*t*3600 = 11*0.8*(3840 + 42)*3600 = 122981760 м3;
руб.;
Экономия за счет сокращения сроков технического обслуживания КУ составляет 3345103.9 рублей в год.
6.2.9 Прочая экономияУменьшение затрат на обучение персонала, сокращение числа обслуживаемых элементов и другие положительные эффекты являются менее значимыми на уровне описанной выше экономии от увеличения продолжительности рабочего времени, однако они так же проявляются.
6.2.10 Годовая экономия от внедрения АТКВ общем случае с учетом всех перечисленных выше факторов годовая экономия от внедрения АТК рассчитывается по формуле:
Эг = Эп1 + Эп2 + Зосв - СГАТК; (6.13)
Эг = 3345103.9 + 3327008.3 + 785925.5 - 4110198.65 = 3347839.05 руб.
Годовая экономия составляет 3347839.05 руб.
6.2.11 Годовой экономический эффектГодовой экономический эффект от внедрения автоматизации определяется по формуле:
; (6.14)
где - нормативный коэффициент экономической эффективности капитальных вложений для вычислительной техники обратный по отношению к сроку окупаемости (). В условиях рыночной экономики, по мере ускорения научно-технического прогресса, нормативные сроки окупаемости, при производстве электронно-вычислительной техники последовательно снижаются – 4; 3; 2,5 и 2 года. Это вызвано быстрым старением компьютеров, поэтому для различных отраслей промышленности =0.33.
- капитальные вложения на проектирование и внедрение АСУ ТП, приобретение КТС, проектирование и внедрение специальных технических средств и т.д., равны 1045739 руб.
руб.
Годовой экономический эффект составляет 3080427.18 руб.
6.2.12 Капитальные затраты на разработку и ввод в эксплуатацию АСУТПКапитальные затраты на разработку и ввод в действие АСУ ТП рассчитываются по формуле:
; (6.15)
где - стоимость всех работ по разработке проекта и внедрению АСУ ТП (по договору), равна 150000 руб;
- стоимость разработки специального (прикладного) математического обеспечения (СМО) для управления технологическим процессом, равна 35000 руб. (по договору);
руб.
Капитальные затраты на разработку и ввод в эксплуатацию АСУ ТП составляют 810339 руб.
6.2.13 Срок окупаемости капитальных вложенийПрименительно к проекту АТК для дискретных производств, т.е. требующих больших трудовых ресурсов, срок окупаемости капитальных вложений рассчитывается по формуле:
; (6.16)
- годовая экономия, равна 3347839 руб.
Срок окупаемости капитальных вложений составляет менее 0.242 года.
В таблице 6.2 приведены основные параметры, изменившиеся после внедрения новой системы управления.
Таблица 6.2
Технико-экономические показатели внедрения АС
Показатели | Ед. Изм. | Значение показателя | Экономия (-) Увеличение (+) | |
До автоматизации | После автоматизации | |||
Годовая программа перекачиваемого газа | м3 | 119655360 | 121651200 | + 1995840 |
Численность работников в т.ч.: | Чел. | 8 | 5 | -3 |
Оператор | 2 | 1 | -1 | |
Работник КиПа | 2 | 0 | -2 | |
Электронщик | 2 | 0 | -2 | |
Наладчик | 2 | 0 | -2 | |
Малая группа обеспечения (МГО) | 0 | 3 | +3 | |
Программист | 0 | 1 | +1 | |
Годовая заработная плата персонала | Тыс. руб. | 875.9 | 881.9 | + 6. |
Потребление электроэнергии | кВт. | 1458.79 | 1505.3 | + 46.51 |
Простой Л-24/6 в связи с аварией КУ | Час | 40 | 16 | - 24 |
Годовая экономия | Тыс. руб. | -- | 3347.8 | + 3347.8 |
Годовой экономический эффект | Тыс. руб. | -- | 3080.4 | +3080.4 |
Дополнительные капитало вложения | Тыс. руб. | -- | 810.3 | +810.3 |
Срок окупаемости | Лет | -- | 0.242 | -- |
Вывод
Из данного расчета и проведенного анализа технико-экономических показателей делаем вывод о целесообразности внедрения «Автоматизированной системы управления компрессорной установкой». Так как в результате годовая экономия затрат от автоматизации системы составляет 3347839.05 рублей. Это достигается за счет экономии в зарплате 785925.5 руб., высвобожденных работников; увеличения объемов транспортируемого газа 1995840 м3. Годовой экономический эффект составляет 3080427.18 рублей; дополнительные капитало вложения 810339 рублей. Ожидаемый срок окупаемости 0.242 года, что ниже нормативного в 12 раз.
7. ОХРАНА ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ
7.1 Описание объекта с точки зрения охраны труда
Предлагаемая модернизация внедряется в САУ КУ, которые расположены на установки гидроочистки моторного топлива (Л-24/6).
Вредными и опасными физическими производственными факторами, характерными для данного объекта являются:
- повышенная загазованность воздуха, высокий уровень шума и вибраций, взрывоопасность среды, интенсивное электромагнитное поле промышленной частоты, электрошок.
Рабочие и служащие для защиты от воздействия опасных и вредных производственных факторов обеспечены спецодеждой, спецобувью и предохранительными приспособлениями.
... сигналами времени. Ядро предлагает интерфейс для программирования приложения с целью получения функций в виде отдельных программ. 1.2 Разработка автоматизированной системы управления электроснабжением КС «Ухтинская» 1.2.1 Цель создания АСУ-ЭС Целью разработки является создание интегрированной АСУ ТП, объединяющей в единое целое АСУ электрической и теплотехнической частей электростанции, ...
... по окончании работ: Сделать соответствующие записи в документации. Убрать инструмент в места хранения . Выключить освещение. Закрыть помещение на ключ. 2 Требования к электрооборудованию Как и в других электроустановках, компрессорная установка имеет главный электропривод, а именно асинхронный двигатель с короткозамкнутым ротором, который приводит во вращения поршни компрессора. Двигатель ...
... , преобразования их в цифровую форму, передачей их в ПК через параллельный порт и последующей обработки этих данных разработанной программной системой автоматического контроля технологических параметров. 9.2 Структура лабораторного стенда Лабораторный стенд основывается на интегральной микросхеме аналого-цифрового преобразователя 572ПВ4, которая представляет собой 8-ми канальную 8-ми ...
... более 40 мкм Максимальная влажность газа на всасывании – состояние насыщения при отсутствии капельной влаги. Температура газа на всасывании от 233 К до 318 К (от -40°С до+45°С). Тип компрессора — двухступенчатый центробежный нагнетатель с вертикальным разъемом, спроектированный для параллельной работы в группе или для одного агрегата. Основные параметры нагнетателя приведены в ГОСТ 23194—83. ...
0 комментариев