1. Строение.
Лантаноиды и актиноиды располагаются в третьей побочной группе Периодической системы. Эти элементы следуют в таблице сразу после лантана и актиния и поэтому их называют соответственно лантаноиды и актиноиды. В короткой форме Периодической системы Д.И. Менделеева они вынесены в два последних ряда. Они относятся к f-элементам.
У в атомах лантаноидов и актиноидов происходит заполнение соответственно 4f- и 5f-подуровней.
Лантаноиды очень сходны по химическим свойствам. Близость свойств соединений лантаноидов обусловлена тем, что застройка внутренней 4f-оболочки атомов мало сказывается на состоянии валентных электронов. В образовании химической связи 4f-электроны лантаноидов обычно не принимают участия.
Электроны заполняют 4f-, а не 5d-подуровень потому, что в этом случае они обладают меньшей энергией. Однако разница в энергиях 4f- и 5d-состояний очень мала. Благодаря этому один из 4f -электронов (а в некоторых случаях, например, у церия, два 4f--электрона) легко возбуждается, переходя на 5d-подуровень, и становится, таким образом, валентным электроном. Поэтому в большинстве своих соединений лантаноиды имеют степень окисления +3, а не +2. Это обстоятельство объясняет близость свойств лантаноидов к свойствам элементов подгруппы скандия.
В пределах одного периода с возрастанием порядкового номера размеры атомов элементов уменьшаются. Подобная закономерность наблюдается не только для элементов главных подгрупп, но, за немногими исключениями, и для элементов побочных подгрупп. Такое же уменьшение радиусов атомов имеет место и в случае лантаноидов (лантаноидное сжатие).
Как и в случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5f); строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5f- и 6d-подуровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5f-электроны легко переходят на подуровень 6d и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисления элементов возрастает от +4 до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5f-состоянии, а возбуждение электронов на 6d-подуровень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисления элементов понижается от +6 до +3 (хотя для нептуния и плутония получены соединения со степенью окисления этих элементов +6 и +7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисления +3.
2. Свойства.
Ø Свойства лантаноидов.
В виде простых веществ все лантаноиды представляют собой серебристо - белые металлы (желтизна празеодима и неодима обусловлена образованием на поверхности пленки оксидов). Они хорошо куются. Почти все лантаноиды парамагнитны, только гадолиний, диспрозий и гольмий проявляют ферромагнитные свойства.
В ряду Се—Lu в изменении плотности, температур плавления и кипения проявляется внутренняя периодичность, т. е. указанные свойства металлов подсемейства церия изменяются с такой же последовательностью, как и у металлов подсемейства тербия (табл.1 ).
Таблица 1.
Физические свойства лантаноидов
Металл | Плотность, кг/м3 | Температура , 0 С | |
плавления | кипения | ||
Подсемейство церия | |||
Лантан | 6120 | 920 | 3420 |
Церий | 6770 | 804 | 3470 |
Празеодим | 6770 | 935 | 3017 |
Неодим | 7010 | 1024 | 3210 |
Прометии | — | — | — |
Самарий | 7540 | 1072 | 1670 |
Европий | 5240 | 826 | 1430 |
Гадолиний | 7890 | 1312 | 2830 |
Подсемсйстео тербия | |||
Тербий | 8250 | 1368 | 2480 |
Диспрозий | 8560 | 1380 | 2330 |
Гольмий | 8780 | 1500 | 2380 |
Эрбий | 9060 | 1525 | 2390 |
Тулий | 9320 | 1600 | 1720 |
Иттербий | 6950 | 824 | 1320 |
Лютеций | 9850 | 1675 | 2680 |
Температуры плавления в этом ряду возрастают, исключение составляют только европий и иттербий. Они имеют также относительно более низкие, чем у остальных элементов, температуры кипения.
Лантаноиды, как и лантан, по реакционной способности уступают лишь щелочным и щелочноземельным металлам. Во влажном воздухе они быстро тускнеют (вследствие образования оксида) , а при нагревании до 200—400°С на воздухе воспламеняются и сгорают с образованием смеси оксидов (Э203) с нитридами (ЭN). Церий в порошкообразном состоянии даже при обычных условиях легко воспламеняется на воздухе. Это свойство церия нашло применение при изготовлении кремней для зажигалок.
4Э +3О2 =2Э2О3
Лантаноиды взаимодействуют с галогенами, а при нагревании — с азотом, серой, углеродом, кремнием, фосфором, водородом.
2Э +3Cl2=2ЭCl3
2Э +N2= 2ЭN
Э +2S = ЭS2
Э + 2 С = ЭС2 или 2Э + 3С = Э2С3
Э + Н2 = ЭН2
Карбиды, нитриды и гидриды лантаноидов взаимодействуют с водой с образованием гидроксида и соответственно ацетилена или различных углеводородов, аммиака и водорода.
ЭN + 3Н2О = Э(ОН)3 +NН3
ЭС2 + Н2О = Э(ОН)3 +С2Н2
ЭН2 +Н2О = Э(ОН)3 +Н2
Находясь в ряду напряжений значительно левее водорода (электродные потенциалы их колеблются е пределах от —2,4 до —2,1 В), лантаноиды окисляются горячен водой по реакции:
2Э + 6Н20 = 2Э(ОН)3 + 3Н2.
Они хорошо взаимодействуют с разбавленными растворами НС1, HN03 и H2S04.
2 Э +6НCl =2 ЭСl3 +3H2
В растворах фосфорной и плавиковой кислот лантаноиды устойчивы, так как образуют защитные пленки малорастворимых солей. В водных растворах щелочей лантаноиды не растворяются. Химическая активность элементов в ряду Се—Lu несколько снижается, что связано с уменьшением радиусов их атомов и ионов.
Оксиды лантаноидов отличаются высокой химической прочностью и тугоплавкостью. Например, La203 плавится при температуре выше 2000°С, а Се02 — около 2500°С. В воде они практически нерастворимы, хотя интенсивно (с выделением теплоты) взаимодействуют с ней с образованием соответствующих гидроксидов Э(ОН)3. Гидроксиды также труднорастворимы в воде. В ряду лантаноидов основная сила гидроксидов постепенно уменьшается с уменьшением радиусов в результате лантаноидного сжатия. С уменьшением ионных радиусов увеличивается прочность связи с кислородом. Поэтому гидроксиды последних лантаноидов - иттербия и лютеция – проявляют слабую амфотерность .
Оксиды и гидроксиды лантаноидов растворяются в кислотах (кроме HF и Н3Р04).
Соли лантаноидов со степенью окисления +3 почти не гидролизуются, поскольку Э(ОН)3 -довольно сильные основания. Хорошо растворимые соли (хлориды, нитраты, сульфаты) образуют различные кристаллогидраты. Мало растворимы фториды, карбонаты, фосфаты, оксалаты. Многие соли Э3+ образуют с аналогичными солями щелочных металлов хорошо кристаллизующиеся двойные соли. Раньше их применяли для разделения РЗЭ кристаллизацией.
Э2(SO4)3 + Ме2SO4 = Ме2SO4· Э2(SO4)3
Ионы Э3+ в водном растворе образуют гидратные комплексы [Э(H20)n]3+, n=8. Гидратированные ионы окрашены: Се3+- бесцветный, Рr+3 - желто-зеленый, Nd3+ - красно-фиолетовый, Рm3+ - розовый, Sm3+ -желтый, Eu3+, Gd3+, Tb3+ - бесцветные, Dy3+ - бледно-желто-зеленый, Но+3- коричневато-желтый, Ег+3- розовый, Тm - бледно-зеленый, Yb3+, Lu3+ — бесцветные. Ион Ce4+(p) имеет ярко-желтую окраску.
Некоторые лантаноиды имеют, помимо характеристической, еще степени окисления +4 и +2. Среди лантаноидов, проявляющих степень окисления +4, выделяется церий. Относительно более стабильные соединения в степени окисления +2 дает европий.
Диоксид СеО2 образуется при непосредственном взаимодействии компонентов . Он плавится при 2600 0 С под давлением кислорода, начинает отщеплять кислород только при 2300 0С. При 1250 0С Се02 восстанавливается водородом до Се203. Диоксид церия не растворяется в воде, а после прокаливания и в кислотах, и в щелочах. СеО2 -.является сильным окислителем, например, выделяет хлор из соляной кислоты:
2CeO2 +8HCI = 2CeCl3 +CL2 + H20
Гидроксид церия Се(ОН)4 при взаимодействии с кислотами-восстановителями образует соли со степенью окисления церия +3:
2Се(ОН)4 + 8НС1 = 2СеС13 + С12 + ЗН20.
Из солей кислородсодержащих кислот, содержащих ионы лантаноидов со степенью окисления +4, известны только производные церия. Сульфат Ce(S04)2 получается нагреванием Се02 с горячей концентрированной серной кислотой. Ce(S04)2 — порошок желтого цвета, хорошо растворяется в воде, подвергается гидролизу. Сульфат церия из водных растворов выделяется в виде розовых кристаллов с различным содержанием воды, среди которых доминируют кристаллогидраты с 8 молекулами воды. Известны только основные нитраты и карбонаты: Ce(OH)(N03)3 и Се2(ОН)2(СО3)3. В то же время Се (+4) образует устойчивые ацетат и перхлорат: Се(СН3СОО)4, Се(С104)4.
Для Ce(+4) известны довольно устойчивые комплексы [Се(С2О4)3]'2_ и [Се(N03)6]-2. Из галогенидных комплексов наиболее устойчивы фторидные.
Степень окисления +2 наиболее характерна для европия, хотя известны оксиды, галогениды и сульфаты самария и иттербий в степени окисления +2. Нагреванием на воздухе Eu203 с графитом до 1700 0С получен темно-коричневый оксид ЕuО. Монооксид европия — тугоплавкие кубические кристаллы — медленно разлагается водой с выделением водорода, т. е. является сильным восстановителем. Известны также монооксиды самария и иттербия . Восстановлением EuF3 водородом при 1000 0С можно получить дифторид EuF2. Известны дихлориды, дибромиды, дииодиды Sm, Eu, Tm и Yb. Их устойчивость в указанном ряду лантаноидов снижается слева направо и, естественно, от хлоридов к иодпдам.
Катодным восстановлением сульфатов Э(+3) получены белый EuSO4, светло-зеленый YbSO4, и красный SmSO4.
Все производные лантаноидов в степени окисления +2 являются восстановителями, например :
2 YbSO4 +H2SO4 = Yb2(SO4)3 + H2
Ø Свойства актиноидов
Из актиноидов наибольшее значение имеют лишь торий, уран и плутоний. Поэтому рассмотрим их более подробно.
Торий, уран и плутоний - серебристо-белые твердые металлы, на воздухе быстро покрываются темной пленкой из оксидов и нитридов. Некоторые физические свойства некоторых актиноидов указаны в табл. 2
Таблица 2.
Физические свойства некоторых актиноидов
Металл | Плотность, кг/м3 | Температура, °С | |
плавления | кипения | ||
Актиний | - | 1 100 | - |
Торий | 11720 | 1750 | 3 000-4 400 |
Протактиний | 15 370 | 1 873 | — |
Уран | 19 040 | 1 132 | 3818 |
Нептуний | 20 450 | 637 | — |
Плутоний | 19 740 | 640 | 3 235 |
Америций | 13 670 | 995 | 2 607 |
Кюрий | 13 500 | 1340 | - |
Данные элементы радиоактивны, периоды полураспада для 232Th, 238U и 239Pu составляют соответственно 1,40 •1010, 4,5•109 и 24 400 лет.
Строение внешних электронных оболочек атомов: 6d27s2 , U 5f 36d17s2, Pu 5f6 7s2. Таким образом, в атоме Pu происходит «провал» электрона на 5f-оболочку.
Торий, являющийся аналогом церия, проявляет степени окисления +2, +3 и +4, две первые редки, последняя - характерна. Стабильность степени окисления +4 связана с тем, что ион Th4+ имеет электронную конфигурацию атома Rn. Как уже указано выше, характерными степенями окисления урана являются +4 и +6, последняя представлена большим числом соединений (ион U6+ имеет электронную конфигурацию Rn). Плутоний проявляет степени окисления от +3 до +7, наиболее распространены соединения Pu+4 .
Для остальных актиноидов характерны следующие степени окисления :
протоактиний +4, +5 и +6
нептуний и плутоний наиболее характерна степень окисления +3 и
+4, получены соединения со степенями
окисления+6 и +7
америций и кюрий наиболее характерна степень окисления +3,
имеются соединения со степенью окисления
+4.
берклий следующие наиболее характерна степень окисления +3.
за ним элементы
Актиноиды, подобно лантаноидам, характеризуются высокой химической активностью. В высокодисперсном состоянии Th, U и Pu активно поглощают водород, образуя нестехиометрические металлоподобные соединения, состав которых приближается к ЭНз. Термическое разложение UH3 можно использовать для получения особо чистого водорода.
При нагревании в присутствии кислорода эти металлы образуют' оксиды: бесцветный ТhO2, темно-коричневый UO2, желто-коричневый РuO2.
Э +О2 =ЭО2
Это тугоплавкие соединения, особенно ТhO2 (т. пл. 3220 °С). При более сильном нагревании (до красного каления) уран образует темно-зеленый оксид U3O8, формулу этого соединения можно записать U2+4U+6O8 .
Гидроксиды Э(ОН)3 малорастворимы в воде и имеют основный характер. Гидроксиды Э(ОН)4 имеют основный характер и также нерастворимы в воде
Рассматриваемые металлы реагируют с кислотами, образуя соли Э+4.
Э + 2Н2SO4 = Э(SO4)2 + 2H2
Соли, в которых актиноиды находятся в состоянии окисления +4, напоминают по свойствам соли Се4+. Соли актиноидных металлов, в которых последние находятся в степени окисления +3, сходны по свойствам с аналогичными солями лантаноидов.
При действии на уран избытка фтора образуется гексафторид UF6 бесцветное, легко возгоняющееся кристаллическое вещество (давление его пара 101 кПа при 56,5 °С). Это единственное соединение урана, существующее в газообразном состоянии при низкой температуре. Данное обстоятельство имеет большое практическое значение, поскольку разделение изотопов 235U и 238U (с целью получения атомной энергии) осуществляют с помощью процессов, протекающих в газовой фазе (центрифугирование, газовая диффузия). При растворении в воде UF6 гидролизуется
UF6 +2Н2О = UО2F2 +4HF
Тетрафторид UF4 получают действием HF на UО2.
UО2 + 4 HF = UF4 + 2Н2О
Аналогичными свойствами обладают гексафториды нептуния и плутония.
С хлором уран образует легко растворяющийся в воде тетрахлорид UCl4. При избытке хлора получается UCI5, легко диспропорционирующий на UCl4 и UC16 .
При нагревании уран активно взаимодействует с азотом, серой и другими элементными веществами.
Соединения U+4 в подкисленных водных растворах легко окисляются до шестивалентного состояния с образованием ярко-желтых солей уранила. Поскольку с увеличением заряда иона актиноида усиливается его взаимодействие с водой (гидролиз), то в водном растворе ионы Э5+ и Э6+ не существуют. В воде они превращаются соответственно в ионы ЭО2+ и ЭО22+. Связи атомов кислорода с ионами актиноидов в состоянии окисления +5 и +6 настолько прочны, что ионы ЭО2+ и ЭО22+остаются неизменными при многих химических превращениях. Гидроксид уранила при нагревании разлагается, образуя оксид UО3. При действии Н2О2 на раствор нитрата уранила образуется желтый пероксид урана:
U02(N03)2 + Н202 + 2Н20 = U04 •2Н20 ¯+ 2HN03
Для соединений актиноидов чрезвычайно характерны реакции диспропорционирования. Например, ион пятивалентного плутония РuО2+ в водном растворе диспропорционирует на ионы трехвалентного и шестивалентного плутония:
3Pu02+ + 4Н+ = Рu3+ + 2PuO22+ + 2Н20
Многие соли актиноидов хорошо растворимы в различных органических растворителях, не смешивающихся с водой. На этом основана экстракция соединений актиноидов органическими веществами из водных растворов. Экстракционные процессы нашли широкое применение в технологии выделения и разделения, близких по свойствам актиноидов.
... , чем выделение из природных источников. 7.ПОЛУЧЕНИЕ. Актинидные металлы высокоэлектроположительны и реагируют с водяным паром, кислородом и, в мелкодисперсном состоянии, с азотом воздуха. Из-за a-активности актинидов для работы с ними необходимы прозрачные боксы с принудительной вентиляцией. Для некоторых тяжелых актинидов необходимы экраны, поглощающие нейтроны, образующиеся при ...
... H2O + Cl2 NaOH + CeO2 = Na2CeO3 + H2O а соединения со степенью окисления II (Eu, Sm, Yb) – восстановительные, причем окисляются даже водой: 2SmCl2 + 2H2O = 2SmOHCl2 + H2 Лантаноиды очень реакционноспособны и легко взаимодействуют со многими элементами периодической системы: в кислороде сгорают при 200–400 °С с образованием Э2O3, а в атмосфере азота при 750–1000 °С образуют ...
... на подгруппы (главную и побочную) основано на различии в заполнении электронами энергетических уровней. Главную подгруппу составляют s- и р-элементы, а побочную подгруппу — d и f-элементы. Например в IV группу Периодической системы элементов входят следующие элементы: Главная подгруппа (подгруппа углерода) Побочная подгруппа (подгруппа титана) C...2s22p2 Ti...3d24s2 Si...3s23p2 ...
... на основе электрофоретической мобильности и высокая специфичность иммунных антисывороток. Лекция 16. Принцип иммунного электрофореза. Иммунофиксация Электрофорез с иммунофиксацией (JFE) - это двухступенчатый процесс, использующий электрофорез протеинов на первом этапе и иммунопреципитацию на втором. При этом исследованию может быть подвергнута сыворотка крови, моча, спинномозговая или ...
0 комментариев