1.3 Получение и определение акриламида
В промышленности акриламид получают:
1. Гидролизом акрилонитрила 84,5%-ной H2SO4 при 80-100°С в присутствии ингибиторов полимеризации (соли Си или Fe, сера, фенотиазин и др.). Образовавшуюся сернокислую соль акриламида нейтрализуют стехиометрическим количеством NH3 или известковым молоком.
2. Каталитическим гидролизом акрилонитрила при 80-120 °С в присутствии медных катализаторов (медь Ренея, Cu/Cr2O3, Cu/Al2O3-SiO2 или др.). Степень превращения акрилонитрила 98,5%. Основная примесь – β-гидроксипропионитрил (до 0,1%). Этот способ производства предпочтительнее, чем сернокислотный, в экономическом и экологическом отношении.
В лабораторной практике акриламид можно получать из акрилоилхлорида или акрилового ангидрида и NH3.
Акриламид определяют бромид-броматометрически, в водных растворах - рефрактометрически, малые количества - методами полярографии или газожидкостной хроматографии. Примеси акриловой кислоты и ее солей обнаруживают алкалиметрически [1].
1.4 Применение акриламида и производных
Акриламид - мономер в производстве полиакриламида и сополимеров с акриловой кислотой, кислыми эфирами малеиновой кислоты и др., клеев.
N-Метилолакриламид, используемый в виде 60%-ного водного раствора, - мономер для получения сополимеров с акриламидом, винилацетатом, акрилонитрилом и акриловой кислотой.
N, N' - Метилен-бис-акриламид - сшивающий агент и модификатор аминоальдегидных смол [1].
1.5 Токсичность акриламида
Акриламид и его производные действуют преимущественно на нервную систему при любом пути поступления в организм (нарушается координация движений, возникают атаксия, судороги, параличи). Поражаются также печень и почки. Легко проникая через неповрежденную кожу, вызывают развитие неврологических симптомов. Наиболее токсичен акриламид [2].
Острое отравление. Введение через рот смертельных доз акриламида белым крысам вызывало судороги. Для крыс, морских свинок и кроликов ЛД50 = 150÷180 мг/кг. Изменения на энцефалограммах свидетельствовали о диффузности поражения различных отделов нервной системы. Повторное введение доз, не вызывающих судорог, приводит к развитию атаксии и дрожания тела по типу мозжечковой асинергии.
Хроническое отравление. Животные. На кумулятивные свойства акриламида указывает нарастание симптомов при длительном поступлении яда. При добавлении к пище крыс в течение 1-6 месяцев 0,02—0,04% или при поступлении акриламида с питьевой водой в дозе 10—20 мг/кг в течение 29—192 дней поражались в основном периферические нервы, имели место дегенеративные изменения осевых цилиндров и миелиновых оболочек. Страдали преимущественно дистальные отделы нервов с наибольшим диаметром.
Человек. Описано несколько случаев производственных отравлений при контакте с акриламидом в течение 4-60 недель. В клинической картине отравления превалировали симптомы нарушения функций среднего мозга и периферической нервной системы. Наблюдались мышечная слабость, потеря чувствительности, арефлексия, потеря равновесия. При прекращении контакта с акриламидом полное выздоровление наступало через 2-12 месяцев (авторы ставят под сомнение возможность полного восстановления при тяжелых случаях отравления). Нарушение функции периферической нервной системы у 15 рабочих производства акриламида со стажем работы от 2 месяцев до 8 лет. При большом стаже имели место атактическая походка, изменения энцефалограмм.
Действие на кожу. У кроликов после 10 нанесений 10% водного раствора акриламида развивались некоторые неврологические симптомы, без раздражающего действия на кожу. Однако у человека 1% водный раствор акриламида вызывал раздражение кожи [2].
Предельно допустимая концентрация. В РФ не установлена. В США принята 0,3 мг/м3 [2].
Индивидуальная защита. Меры предупреждения. Защита дыхательных путей — использование респираторов типа «Лепесток» и «Астра-2» при наличии пыли. Тщательная защита кожи. Соблюдение мер личной гигиены. Периодические медицинские осмотры рабочих для возможно более раннего выявления неврологических симптомов [2].
Аналогично действуют N,Ν-диметилакриламид, Ν,Ν-диэтилакриламид, N-изопропилакриламид, N-гидроксиметиленакриламид и метакриламид. Но они менее токсичны, специфические неврологические симптомы развиваются при бóльших дозах. Для крыс ЛД50 N-изопропилакриламида 350 мг/кг (Barnes). Раздражают кожу и проникают через нее [2].
2. Полиакриламид
В настоящее время широко применяются водорастворимые полимеры на основе акриламида (АА) [3]
которые объединены общим названием "полиакриламиды".
В эту группу входят полиакриламид (ПАА) - неионогенный полимер
его анионные производные, например, частично гидролизованный ПАА
и катионные производные, например поливиниламин
а также сополимеры АА с различными ионогенными и неионогенными мономерами. Полимеры и сополимеры с разной молекулярной массой (ММ), молекулярно-массовым распределением, химическим составом и распределением звеньев исходных мономеров вдоль цепи, линейные, разветвленные и сшитые имеют разное функциональное назначение и различные области применения.
Впервые АА был получен в 1893 году, однако освоение промышленного производства началось только в начале 50-х годов нашего столетия, что сдерживалось плохой сырьевой базой. Способность АА полимеризоваться в присутствии радикальных инициаторов и подходящие для многих целей свойства обеспечили быстрое налаживание и расширение производства полимеров. Первоначально эти полимеры применяли в качестве флокулянтов для осаждения и фильтрации шлама фосфоритов в технологии обработки урановых руд и прочностных добавок для бумаги, а в дальнейшем стали широко использовать в различных отраслях промышленности, сельском хозяйстве и медицине в качестве флокулянтов, загустителей, адгезивов, смазок, структурообразователей, пленкообразователей. Несмотря на важные мирные профессии полимеров АА, их использование в оборонной промышленности значительно ограничило доступность научной информации, поэтому до начала 70-х годов в литературе отсутствовали сведения о технологии производства полимеров. В последние годы наряду с улучшением сырьевой базы создана научная основа для направленной разработки полимеров с заданными свойствами, разработаны перспективные методы синтеза полимеров - полимеризация и сополимеризация АА в концентрированных водных растворах и дисперсиях, получили развитие методы химической модификации полимеров. В настоящее время полимеры АА производят крупные фирмы США, Японии и развитых стран Европы. Они являются основными поставщиками полимеров на мировой рынок, а в России, Китае и ЮАР полимеры производят для внутреннего потребления. Производство полимеров АА продолжает неуклонно возрастать и к концу века достигнет 400 тыс. т в год. Однако темпы роста производства не удовлетворяют потребностей, которые ежегодно возрастают на 8-10%. Поэтому актуальны разработка новых и совершенствование существующих перспективных методов синтеза ПАА, его производных и сополимеров АА [4].
... макрорадикалов с катион-радикалом R3N* например, по схеме Катион R2N=CHCH2CONH2 по описанной выше схеме (1) превращается далее в енамин, вторичный амин и альдегид. Образование карбонильного соединения при полимеризации акриламида в присутствии системы ПСК — ТКА подтверждено нами экспериментально. Увеличение скорости распада персульфатного инициатора под действием ТКА, естественно, ...
... среде приведет в будущем к получению новых методов повышения отдачи нефти пластами, основанных на новых физических принципах. В качестве примера приложения теоретических основ физики нефтяного пласта к нефтепромысловой практике рассмотрим физические основы некоторых методов увеличения нефтеотдачи пластов. 4.1 Обработка поверхностно-активными веществами Необходимых изменений поверхностных и ...
... очистки природных вод. Киев: Вища школа. 1981. 328 с. 2. Небера В.П. Флокуляция минеральных суспензий. М.: Недра. 1983. 288 с. 3. Вейцер Ю.И., Минц Д.М. Высокомолекулярные флокулянты в процессах очистки природных и сточных вод. М.: Стройиздат. 1984. 202 с. 4. Запольский А.К., Баран А.А. Коагулянты и флокулянты в процессах очистки воды: Свойства. Получение. Применение. М.: Химия. ...
... воде коллоидными веществами, нейтрализуя их заряд и образуя мостиковые связи (соединения) между отдельными частицами, что приводит к образованию видимого нерастворимого осадка или флокул. Модификации полиэлектролитов Свойства этих веществ можно модифицировать в зависимости от характера удаляемых из воды коллоидов. Полиэлектролиты могут иметь разный молекулярный вес и ионообменную емкость. Кроме ...
0 комментариев