3. Команда: fsolve ( )
По умолчанию Maple пытается найти аналитическое выражение для корней уравнения. Если это не удается, то, как отмечалось выше, в области вывода ничего не печатается. В подобных случаях (если корни действительно существуют) можно воспользоваться командой fsolve(), которая находит численное решение уравнения или системы уравнений. Формат команды отличается от формата команды solve() наличием третьего параметра опция:
fsolve (уравнения, переменные, опция);
Задание первых двух параметров соответствует заданию аналогичных параметров в команде solve(), а параметр опция может принимать значения из таблицы 1.
Таблица 1. Значения параметра опцuя команды fsolve ( )
Значение | Смысл |
complex | Разыскиваются комплексные корни (только для полиномов) |
Fulldigits | Используется арифметика с максимальной мантиссой |
Maxsols=n | Разыскивается n решений (только для полиномов) |
а.. b или x=a..b | Задан промежуток [а, b], на котором разыскивается решение (во второй форме задания этой опции х обозначает имя неизвестной переменной в уравнении) |
Для произвольного уравнения по умолчанию эта функция находит одно решение, но для полиномов определяются все действительные корни. Для нахождения всех корней полинома, включая комплексные, следует задать опцию complex. В примере 4 показано использование команды численного решения уравнений.
Пример 4. Численное решение уравнений.
> eq:=x^4+2*x^2-2=0;
> s:=fsolve(eq,x);
> s:=fsolve(eq,x,complex);
> fsolve(ln(sin(x))=0,x);
> fsolve(ln(sin(x))=0,x,x=2..infinity);
> fsolve(ln(sin(x))=0,x,x=15..infinity);
Здесь также показано, как можно последовательно находить корни произвольного уравнения, задавая интервал изменения неизвестной величины с учетом полученного решения на предыдущем шаге нахождения корня (последние три команды).
4. Другие команды решения уравнений
Кроме универсальных команд solve () и fsolve () решения уравнений и систем уравнений, система Maple содержит специализированные команды, предназначенные либо для решения определенного класса уравнений, либо нахождения решений в заданном числовом поле. Здесь эти команды описаны предельно кратко для того, чтобы читатель знал об их существовании. Более подробно об этих командах можно узнать в справочной системе Maple, выполнив команду ?имя_команды, где вместо параметра имя_команды следует подставить ее действительное имя.
Команда isolve () ищет все целые решения уравнений. Если в уравнении задано несколько неизвестных, то строится решение относительно всех заданных неизвестных.
Пример 5. Целочисленное решение уравнений.
> isolve({(x+1)*(x-1/2)*(x-2)=0});
> isolve({5*x+6*y=1});
В решении последнего уравнения примера 5 использована целочисленная переменная _Z1 сгенерированная Maple.
Команда msolve () также ищет целочисленные решения уравнения, но только по модулю, заданному вторым параметром.
Пример 6. Целочисленное решение уравнений по заданному целому модулю.
> solve({3*x-4*y=1,7*x+y=2});
> msolve({3*x-4*y=1,7*x+y=2},11);
> msolve({3^n=4},11);
Команда rsolve () строит общее решение рекуррентного уравнения, используя начальные значения, если они заданы, или через их символьные обозначения, если они не заданы.
Пример 7. Решение рекуррентных уравнений.
> rsolve({F(n+2)=F(n+1)+F(n)},F(n)); # Без начальных условий
> rsolve({F(n+2)=F(n+1)+F(n),F(0)=1,F(1)=1},{F(n)});
# Используя заданные начальные условия
5. Решение неравенств
Команда solve () используется для решения неравенств и систем неравенств в области вещественных чисел точно так же, как и для решения уравнений и систем уравнений. Ответ выражается либо в виде множества неравенств, либо через функции RealRange () и Open (). Первая определяет замкнутый отрезок действительных чисел, а вторая используется для указания того, что граничная точка не входит в построенное решение. Для задания решения в виде множества, следует задать в виде множества либо само неравенство, либо неизвестную, относительно которой ищется решение. Если этого не сделать, то ответ будет получен с использованием указанных функций определения действительных отрезков.
Пример 8. Решение неравенств.
> solve((x+3)/(4-x)>4,x);
> solve((x+3)/(4-x)>4,{x});
> solve(log[1/2](log[2](x^2-8))>=-1);
> solve({log[1/2](log[2](x^2-8))>=-1});
В примере 8 решены два неравенства, для каждого из которых построено решение в виде множества и в форме действительных интервалов.
Литература
1. Говорухин В.Н., Цибулин В.Г. Введение в Maple. Математический пакет для всех. – М.: Мир, 1997. – 208 с.
2. Дьяконов В.П. Математическая система Maple V. – М.: Издательство “Солон”,1998.
3. Двайт Г.Б. Таблицы интегралов и другие математические формулы. – М.: Наука. Главная редакция физико-математической литературы, 1983. – 176 с.
4. Матросов А.В. Maple 6. Решение задач высшей математики и механики. – СПб.:БХВ - Петербург, 2001.– 528 с.
5. Манзон Б.М. Maple V Power Edition – М.: Информационно-издательский дом “Филинъ”,1998г.
... b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z. ...
... c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k , которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k , l, m, n а неизвестные – буквами x, y,z. ...
... курс «Решение уравнений и неравенств с использованием свойств функций» Глава II. Разработка элективного курса «Решение уравнений и неравенств с использованием свойств функций» §1. Методические основы разработки элективного курса Пояснительная записка. Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и ...
... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах. § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах. При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...
0 комментариев