2. ПРИГОТОВЛЕНИЕ ТОВАРНОЙ ПРОДУКЦИИ
Товарная продукция, вырабатываемая на НПЗ, может быть условно разделена на две группы: 1) продукция, производимая непосредственно на технологических установках, и 2) продукция, приготавливаемая из различных компонентов. Непосредственно на установках НПЗ вырабатывают индивидуальные углеводородные фракции С3—Cs (пропановую, бутановые, пентановые), ароматические углеводороды (бензол, толуол, индивидуалыше ксилолы), различные марки твердых парафинов, присадки к маслам и т.д.
Значительное количество крупнотоннажных товарных продуктов — бензин, дизельное и котельное топлива, смазочные масла — получают на НПЗ смешением (компаундированием) из компонентов, вырабатываемых на различных установках. Так, для приготовления автомобильных бензинов на некоторых НПЗ используют до 10—15 компонентов.
На нефтехимических предприятиях товарная продукция — спирты, альдегиды, кислоты, полиолефины, сырье для производства синтетического каучука и др. — вырабатывается непосредственно в цехах и на установках.
Для осуществления операций по приготовлению товарной продукции из компонентов проектируются специальные объекты, на которых используются следующие основные методы компаундирования:
1) циркуляционный — приготовление производится в смесительных резервуарах;
2) смешение в аппаратах с перемешивающими устройствами;
3) непосредственное смешение в трубопроводах. Разработке проекта узла приготовления товарной продукции должен предшествовать расчет ожидаемых показателей качества товарных продуктов на основе сведений о качестве компонентов. В расчетах следует учитывать, что только некоторые из показателей качества являются аддитивными. Так, плотность смеси, содержание в ней серы, температуру анилиновой точки, показатели фракционного состава, определенные по ИТК, находят суммированием произведений массовых долей компонентов на соответствующие показатели каждого из компонентов. Давление насыщенных паров смеси с достаточной степенью точности можно определить суммированием произведений мольных долей компонентов на давления паров этих компонентов.
В известной степени аддитивными являются показатели октанового и цетанового чисел: Однако определенное по правилу аддитивности октановое число смеси может оказаться выше или ниже реального. Более Точно рассчитать реальное октановое число позволяет формула:
Осм = (О.А.k. + 0вВ)/\00
Здесь Осм — реальное октановое число смеси; О А, Ов — октановые числа ; высокооктанового и низкооктанового компонента смеси, соответственно; А и В — содержания компонентов в смеси, % (об.); k — поправочный коэффициент, определяемый по специальному графику,приведенному в литературе. -
Для расчета октанового числа смеси могут быть также использованы формулы, разработанные ВНИИНП и НПО «Нефтехим-автоматика» и фирмой «Этил Корпорейшн».
Более точные уравнения, по которым можно определить смесительные характеристики мазутов, зная показатели отдельных компонентов, приводятся в литературе.
Метод приготовления товарной продукции многократной циркуляцией через смесительные резервуары применяется в течение многих лет. Сущность метода заключается в следующем. Компоненты товарных продуктов с технологических установок поступают в компонентные,
резервуары парков смешения, анализируются, а затем насосами подаются в смесительный резервуар. Приготовленный в смесительном резервуаре продукт забирается специальными насосами и многократно перекачивается по схеме «резервуар—насос— резервуар» до тех пор, пока в резервуаре не будет получена однородная по составу смесь, показатели которой соответствуют требованиям, предъявляемым к готовому продукту.
Вместимость компонентных резервуаров при приготовлении топлив должна соответствовать 48-часовому запасу каждого компонента, а смесительных резервуаров— 16-ч-асовой выработке данного вида топлива. При получении товарных масел предусматриваются компонентные резервуары, исходя из 36-часового запаса каждого компонента, и смесительные резервуары, исходя из суточной выработки масел.
В табл. приводится пример расчета необходимой вместимости резервуарных парков смешения, автобензина.
Для улучшения условий перемешивания резервуары оборудуют смесительными устройствами: маточниками с большим числом отверстий, направленных вверх, вниз или под углом; так называемыми «пауками» с установленными на них инжекторами-смесителями; подъемными трубами, через которые продукт закачивают на определенную высоту от днища.
В аппаратах с перемешивающими устройствами готовят товарные масла. Для ряда НПЗ была запроектирована установка приготовления масел, в состав которой входят компонентные резервуары, смесители с принудительным перемешиванием, насосная, емкости для присадок и камеры для плавления присадок.
Оба описанных выше метода обладают рядом серьезных недостатков: повышенным расходом электроэнергии, малой производительностью смешения, необходимостью строительства смесительных резервуаров.
Рис. 1.3. Схема автоматической станции смешения:
Р-1—Р-3 — компонентные резервуары; Р-4 — товарный резервуар; Н-1—Н-3 — насосы; Ф-1—Ф-3 —фильтры; PM-J—PM-3— расходомеры; РЕ-1—РЕ-3— регуляторы; К-1—К-3 — регулирующие клапаны; СК-1 — смесительный коллектор.
Более эффективным является приготовление товарной продукции смешением в потоке. Для каждого НПЗ разрабатываются индивидуальные проекты автоматизированных систем (автоматических станций) смешения. Схема автоматической станции смешения, на которой приготавливается продукт из трех компонентов, приведена на рис. 1.3. В состав оборудования станции входят: компонентные резервуары, насосы, фильтры для очистки компонентов от механических примесей, газоотделитель (при приготовлении бензинов), измерители расхода, регулирующие клапаны, обратные, клапаны.
Объем резервуарного парка для хранения компонентов обуславливается производительностью станции смешения, необходимостью остановки для профилактического осмотра и ремонта, потребностью во времени для лабораторного анализа. Нормы технологического проектирования не регламентируют объема компонентных резервуаров, представляя право решать эту задачу проектировщикам. Оптимальные условия эксплуатации, как показывает практика, обеспечиваются при наличии 2-3 резервуаров для каждого компонента, общая вместимость которых соответствует 16—20-часовой выработке этого компонента.
Для перекачки каждого компонента следует предусматривать индивидуальные насосы, причем нежелательно, чтобы одним насосом компонент перекачивался в разные смесительные коллекторы.
В качестве измерителей расхода на станциях смешения применяются объемные счетчики или турбинные расходомеры. Широкое распространение получили венгерские турбинные расходомеры «Турбоквант», достоинством которых являются небольшие размеры, малая металлоемкость, простота ремонта. При разработке проектов станций смешения следует стремиться, чтобы максимальная производительность по компоненту не превышала 75% от пропускной способности расходомера, а минимальная не была близка к нижнему пределу пропускной способности.
Для управления процессом смешения в Рязанском СКВ Московского НПО «Нефтехимавтоматика» разработаны комплексы приборов управления «Поток». В состав комплексов входят блоки компонентов и управления.
Если схема автоконтроля блока компонента фиксирует отклонение действительного расхода компонента от заданного более чем на 0,5% в сторону уменьшения расхода, то формируется команда «Ошибка-1», по которой блок управления снижает скорость смешения.
В составе комплексов имеются основные и резервные блоки. При нарушении режима работы основных блоков резервные блоки подключаются к сети и форсированно выводятся на режим работы основного блока.
... труб на новые мембранные мелкопузырчатые аэраторы. Для достижения поставленных целей необходимо было решить следующие задачи: Ø Тщательно изучить теоретические основы технологии биохимической очистки сточных вод нефтеперерабатывающих предприятий; Ø Проанализировать имеющуюся технологическую схему очистки сточных вод на предприятии ООО "ЛУКОЙЛ-Пермнефтеоргсинтез"; Ø Выбрать ...
... резервуаров определяются в соответствии со [21] и [28]. На площадке предусматривается единая система автоматической противопожарной защиты. На площадке предусматривается два пожара. Один на резервуарном парке, второй на установке АТ-2 или АТ-1. 2.7 Спецвопрос. Замена теплоизоляции резервуара Энерго- и ресурсосбережение является одним из основных направлений технической политики в мире. В ...
... , входящие в состав предприятий. 8 Нормы проектирования технологического оборудования и его размещение Нормы разработаны на основе изучения опыта проектирования с учетом ассортимента нефтепродуктов, используемых в сельскохозяйственных предприятиях. Наряду с нормированием числа технологического оборудования большое значение имеет выбор схемы его размещения. При правильном размещении ...
... зданий и сооружений на генплане должно исключить распространение вредных выбросов, способствовать эффективному сквозному проветриванию промшющадки и межцеховых пространств. Территория нефтеперерабатывающих и нефтехимических предприятий при проектировании разбивается сеткой улиц на кварталы, имеющие, как правило, прямоугольную форму. Размеры кварталов назначаются в зависимости от габаритов ...
0 комментариев