2. Лампи розжарювання

Електричною лампою розжарювання (рис. 2) називається джерело випромінювання, яке одержують у результаті теплового випромінювання твердого тіла, нагрітого до високої температури, через яке пропускають електричний струм, при цьому тверде тіло поміщено в скляний балон, заповнений газом. Дані лампи широко застосовують як джерела випромінювання в ближній ІЧ-області. Лампи розжарювання - теплове джерело світла, спектр якого відрізняється від денного світла переважанням жовтого та червоного випромінювання і повною відсутністю ультрафіолету.

Застосовуються такі лампи, як правило, в побутовому і декоративному освітленні, а також там, де до висвітлення не пред'являють особливих вимог, а споживання та термін служби ламп не є визначальними факторами.

Рис. 1.2. Лампа розжарювання.

На думку більшості експертів, лампи розжарювання застаріли і є "вчорашнім днем". Коефіцієнт корисної дії в них становить лише 6-8%, і вони більшою мірою нагрівають, ніж висвітлюють (дають 95% тепла і лише 5% - світла). До того ж, такі лампи мають короткий термін служби (не більше 1000 годин) і малу світловіддачу, тобто світловий потік, який припадає на одиницю потужності (7-17 лм / Вт).

3. Галогенні лампи

Галогенна лампа розжарювання (рис. 1.3) являє собою лампу, в колбу якої вводиться невелика кількість галогену, зазвичай йоду або брому. Розпилена нитка вольфраму з'єднується з галогеном, в результаті чого утворюється газоподібна речовина - галогенід вольфраму. Ця реакція приєднання відбувається при температурі 573 K, близької до температури колби. При температурі, близької до температури нагрітої нитки лампи, галогенід вольфраму розпадається на галоген і відновлений вольфрам, який частково осідає на спіралі. Таке повернення розпиленого вольфраму на спіраль лампи усуває його напилювання на стінки колби і подовжує термін служби лампи.

 

Рис. 1.3. Галогенні лампи

 

Лампи розжарювання з галогенним циклом мають термін служби в два-три рази більший, ніж звичайні лампи, а при однаковому терміну служби мають більш високу світлову віддачу і менші розміри тіла розжарювання. Температуру нитки можна довести до 3400 K.

В даний час створені і газорозрядні лампи з галогенним циклом, де використання останнього дозволило поряд зі збільшенням світловіддачі лампи значно поліпшити спектральну характеристику випромінюваного світла. Досліджується можливість застосування фтору, що дозволить наблизити температуру спіралі до температури плавлення вольфраму і збільшити світлову віддачу на 50%. Широко використовуються також галогенні лампи зі скляним відбивачем і кольоровим захисним склом. Кольорове скло додає світловому пучку певний відтінок. Призначені для декоративного освітлення. Галогенні лампи з параболічним скляним відбивачем, покритим металевим алюмінієвим шаром, призначені для створення світлових акцентів. Злегка рифлена поверхня переднього скла добре підкреслює ефект "іскристого" світла і захищає пальник від забруднення і пилу, а також від зіткнення з руками людини. Застосовується в акцентному освітленні, у висвітленні суспільних і житлових приміщень, вуличного підсвічування (при використанні на вулиці лампа повинна бути захищена від попадання вологи).

Галогенні лампи з подвійною колбою (рис. 1.4) працюють від напруги, мають різьбовий цоколь. Лампи характеризуються стабільною світловіддачею і відмінною передачею кольору. Лампи можуть працювати з регулятором яскравості. Застосовуються для освітлення житлових і громадських приміщень.

Лампи розжарювання з часом втрачають яскравість. Сучасні галогенні лампи не мають цього недоліку завдяки додаванню в газ-наповнювач галогенних елементів. Галогенні лампи мають яскраве насичене і рівне світло, спектральний склад якого значно відрізняється від спектрального складу світла звичайної лампи розжарювання і наближений до спектру сонячного світла (див. додаток 1, рис. 6). Завдяки цьому чудово передаються кольори меблів та інтер'єру в теплій і нейтральній гамі, а також колір обличчя людини.


Рис. 1.4. Галогенна лампа з подвійною колбою

 

1.2 Люмінесцентна лампа

 

Люмінесцентна лампа - газорозрядне джерело світла низького тиску. Його світловий потік визначається свіченням люмінофора під впливом ультрафіолетового випромінювання, яке виникає внаслідок електричного розряду.

З середини стінка колби покрита сумішшю люмінесцентних порошків, яка називається люмінофор. Лампи з трьох-смуговим люмінофором більш економічні, оскільки світлова віддача у них становить (до 104 Лм / Вт), але володіють найгіршою передачею кольору (Ra = 80), а лампи з п'яти-полісним люмінофором мають відмінну передачу кольору (Ra = 90-98) при меншій світловий віддачі (до 88 Лм / Вт).

Існує два способи запалювання люмінесцентних ламп - електромагнітним та електронним баластом. Тип баласту впливає на запалювання ламп, а також на мерехтіння в роботі і термін служби паливних електродів. При підпалі люмінесцентних ламп з електромагнітним баластом відбувається до 30% втрат електроенергії. Основною відмінністю люмінесцентного світильника з електронним баластом від такого ж світильника з електромагнітним баластом, крім енергозбереження, ваги та об'єму, є частота мерехтіння: Лампи з електронним баластом працюють з високою частотою мерехтіння близько 42000 Гц в секунду, тоді як лампи з електромагнітним баластом працюють з частотою 100 Гц в секунду, що при тривалому використанні викликає втому очей.


 

 

Рис. 1.5. Прямі трубчасті люмінесцентні лампи

 

Прямі трубчасті люмінесцентні лампи (рис. 1.5) - це газорозрядні лампи низького тиску. Складаються зі скляного балона, двох цоколів з вивідними контактами на обох кінцях балона, двох підігрівних катодів з вольфрамової нитки або сталевої трубки. Балон наповнений парами ртуті і інертним газом (аргоном). Довжина трубки безпосередньо пов'язана зі світловіддачею лампи. Застосовуються в житлових і громадських приміщеннях.

Люмінесцентні лампи у вигляді кільця (рис. 1.6), завдяки своїй формі застосовуються в широкому діапазоні освітлювальних приладів. Через малі габарити трубки цю лампу використовувати можна в максимально плоских світильниках. Вона застосовується для освітлення громадських та житлових приміщень.

 

Рис. 1.6. Люмінесцентні лампи у вигляді кільця

 


Информация о работе «Джерела випромінювання в оптичній спектроскопії»
Раздел: Физика
Количество знаков с пробелами: 37223
Количество таблиц: 3
Количество изображений: 26

Похожие работы

Скачать
17181
1
0

... 3,5 см і довжиною 1 м. Для нагрівання стержнів до них підводиться постійний або змінний струм з напруженням до 100 В. Звичайна робоча температура стержня 1250–1350 К. Газорозрядні джерела. Випромінювання оптичного діапазону в джерелах цього типу виникає внаслідок електричного розряду в атмосфері інертних газів, пар металів або їх сумішей. Газорозрядні джерела характеризуються лінійчатим або ...

Скачать
30811
0
0

... дповідь свідчить: це нікому невідомо. За 15 років не вдалося визначити ні відстані до квазарів, ні їх природу і джерела їх колосальної енергії. Можливо, загадка квазарів таїть в собі ключ до якоїсь нової області астрофізики, якісь нові можливості виникнення великих червоних зсувів в невідомих нам ситуаціях або нові способи генерації гігантських енергій, якщо квазари знаходяться дуже далеко. Споді ...

Скачать
19937
0
4

... спектри атомів Після виявлення рентгенівських променів , було викликало інтерес у багатьох дослідників. Важливий крок вперед зробив англієць Чарлз Баркла, що довів експериментально, що рентгенівське випромінювання це електромагнітні хвилі, довжина яких менша, ніж у видимого світла і ультрафіолетових променів. Рентген досліджував так зване гальмівне рентгенівське випромінювання. Воно виника ...

Скачать
39939
5
10

... Материалы международной конференции “Глобальные информационные системы. Проблемы и тенденции развития”.- Харьков-Туапсе (Украина-Россия).-2007.-C. 48-50. АНОТАЦІЯ Максимов І.С. Нелінійна взаємодія електромагнітного випромінювання з діелектричними періодичними структурами. – Рукопис. Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.04.03 – радіофі ...

0 комментариев


Наверх