3.10 Определение сдвига напряжения

 

Реометр R/S.

Данный реометр отличается от всех остальных приборов Брукфильда тем, что задается не скорость вращения шпинделя, а напряжение сдвига. Такой подход имеет несколько преимуществ: очень широкий диапазон измерения вязкости, возможность измерять предел текучести и возможность изучать высоковязкие гели.

Предлагается несколько моделей реометра R/S. Модель с коаксиальной геометрией комплектуется шпинделями DIN диаметром 8, 14, 25, 45 и 48 мм. Модель с геометрией конус/плита комплектуется конусами с углом 1 и 2 градуса диаметром 2.5, 5.0 и 7.5 см. Также доступна геометрии плита/плита с плоскими плитами диаметром 2.5, 5.0 и 7.5 см. Данная геометрия оптимальна для экстремально вязких веществ или веществ, содержащих твердые частицы.

Прибор для испытаний мягких материалов R/S SST.

Данная версия реометра предназначена для проведения специальных исследований, например изучения текучести материалов. Это отличный способ изучения продуктов, которые нельзя подвергать сдвигу перед измерением.

В реометре используются шпиндели с лопастной геометрией и очень низкими скоростями сдвига и напряжениями сдвига, что позволяет изучать вязкоэластичные характеристики таких материалов, как пасты, гели, парафины и глинистые растворы.

3.11 Нетекучие материалы

 

Изучение нетекучих и слаботекучих материалов представляет собой серьезную проблему. При вращении шпинделя в продукте прорезаются своего рода каналы, в результате чего прибор показывает очень низкую вязкость, не соответствующую действительности. Брукфильд предлагает несколько решений данной проблемы. 1. Стойка спирального движения.

К этой моторизированной стойке можно подсоединить любой вискозиметр Брукфильда. Стойка медленно движется вверх и вниз (со скоростью 7/8 дюйма в минуту), в то время как Т-образный шпиндель вращается в исследуемом материале. Перекладина шпинделя, двигаясь по спирали, постоянно попадает в "свежий" материал. Тем самым исчезает туннельный эффект, присущий обычным шпинделям.

В комплект поставки входят 6 Т-образных шпинделей и специальной соединение для подключения шпинделя к вискозиметру.

2. Спиральный адаптер.

Данный адаптер позволяет изучать пастообразные материалы, такие как паяльные пасты, продукты, косметику и лекарства. Адаптер имеет внутренний резьбовой шпиндель, вращающийся внутри коаксиального цилиндра. При вращении шпинделя проба постоянно прокачивается через адаптер. Измерение производится после того, как установилось постоянное течение. Измерение в условиях постоянного течения (по сравнению с другими методами) менее чувствительно к неоднородности пробы. 3. Лопастные шпиндели.

Лопастные шпиндели при погружении в пробу не нарушают структуру образца. При вращении шпинделя материал захватывается лопастями и образует виртуальный цилиндр. Дисковые шпиндели позволяют получить полные реологические данные, их можно использовать с любым вискозиметром Брукфильда и с реометром R/S-SST.

3.12 Специальные аксессуары

 

Следующие аксессуары можно заказать для использования совместно с вискозиметрами и реометрами Брукфильда. 1. Быстрое соединение. Данное устройство позволяет быстро подсоединить/отсоединить шпиндель. Это экономит время и позволяет избежать опасности испортить резьбу. Быстрое соединение выполнено из нержавеющей стали и может быть использовано с дисковыми шпинделями LV, RV, HA, HB и с Т-образными шпинделями. 2. Удлинитель шпинделя. Удлинитель шпинделя может понадобиться в ситуациях, когда нужно увеличить дистанцию между вискозиметром и пробой (максимум 6 футов). Удлинитель типа D устанавливается между вискозиметром и шпинделем и используется в ситуациях, когда можно наблюдать глубину погружения шпинделя. Тип S включает в себя погружаемую часть шпинделя и используется в ситуациях, когда нельзя наблюдать глубину погружения шпинделя.

3.13 Дымы и опасные условия

Если исследуемый материал образует дым или пар они могут попасть в прибор, этой ситуации следует избегать. Если же пары горючие или взрывчатые, это представляет опасность не только для прибора, но и для персонала. 1. Штуцер продувки.

Данный аксессуар устанавливается на корпус вискозиметра и может использоваться с любой моделью. Инертный газ (например, азот) под небольшим давлением прокачивается через корпус вискозиметра, создавая внутри избыточное давление. Тем самым предотвращается попадание дыма и пара внутрь вискозиметра.

Штуцер продувки также можно установить на корпус системы конус/плита и системы Thermosel, обеспечивая контролируемую атмосферу над пробой. 2. Взрывозащищенная конструкция(только аналоговая модель).

В условиях опасности взрыва следует использовать взрывозащищенное оборудование. Брукфильд предлагает взрывозащищенное исполнение для аналогового вискозиметра. Данный прибор проверен в лаборатории Underwriter и соответствует классу 1 группы D. Для цифровых вискозиметров и реометров взрывозащищенное исполнение недоступно.

Также недоступно взрывозащищенное исполнение для аксессуаров, имеющих электрическое питание, например для стойки спирального движения или для системы Thermosel. Эти аксессуары можно использовать только в безопасных условиях.


4. Таблица конверсии различных величин измерения вязкости

При использовании различных типов вискозиметров для измерения вязкости иногда возникает необходимость перевода одних единиц измерения в другие или в единицы измерения Метрической Системы. Предлагаем Вам воспользоваться данной таблицей:

Универсальные секунды Сейболта ssu

Кинематическая вязкость

сантистоксы

Секунды Редвуда Единицы Энглера Секунды по чашке Партина № 10 Секунды по чашке Партина № 15 Секунды по чашке Партина № 20 Секунды по чашке Форда № 3 Секунды по чашке Форда № 4
31 1.00 29 1 -- -- -- -- --
35 2.56 32.1 1.16 -- -- -- -- --
40 4.30 36.2 1.31 -- -- -- -- --
50 7.40 44.3 1.58 -- -- -- -- --
60 10.3 52.3 1.88 -- -- -- -- --
70 13.1 60.9 2.17 -- -- -- -- --
80 15.7 69.2 2.45 -- -- -- -- --
90 18.2 77.6 2.73 -- -- -- -- --
100 20.6 85.6 3.02 -- -- -- -- --
150 32.1 128 4.48 -- -- -- -- --
200 43.2 170 5.92 -- -- -- -- --
250 54.0 212 7.35 -- -- -- -- --
300 65.0 254 8.79 15 6.0 3.0 30 20
400 87.6 338 11.70 21 7.2 3.2 42 28
500 110 423 14.60 25 7.8 3.4 50 34
600 132 508 17.50 30 8.5 3.6 58 40
700 154 592 20.45 35 9.0 3.9 67 45
800 176 677 23.35 39 9.8 4.1 74 50
900 198 762 26.30 41 10.7 4.3 82 57
1000 220 896 29.20 43 11.5 4.5 90 62
1500 330 1270 43.80 65 15.2 63 132 90
2000 440 1690 58.40 86 19.5 7.5 172 118
2500 550 2120 73.0 108 24 9 218 147
3000 660 2540 87.60 129 28.5 11 258 172
4000 880 3380 117.0 172 37 14 337 230
5000 1100 4230 146 215 47 18 425 290
6000 1320 5080 175 258 57 22 520 350
7000 1540 5920 204.3 300 67 25 600 410
8000 1760 6770 233.5 344 76 29 680 465
9000 1980 7620 263 387 86 32 780 520
10000 2200 8460 292 430 96 35 850 575
15000 3300 13700 438 650 147 53 1280 860
20000 4400 18400 584 860 203 70 1715 1150

5. Заключение

 

5.1 Условия измерений

1 нормальные условия измерений;

нормальные условия

Условия измерения, характеризуемые совокупностью значений или областей значений влияющих величин, при которых изменением результата измерений пренебрегают вследствие малости.

Примечание - Нормальные условия измерений устанавливаются в нормативных документах на средства измерений конкретного типа или по их поверке (калибровке)

2 нормальное значение влияющей величины;

нормальное значение

Значение влияющей величины, установленное в качестве номинального.

Примечание - При измерении многих величин нормируется нормальное значение температуры 20 °С или 293 К, а в других случаях нормируется 296 К (23°С). На нормальное значение, к которому приводятся результаты многих измерений, выполненные в разных условиях, обычно рассчитана основная погрешность средств измерений

3 нормальная область значений влияющей величины;

нормальная область

Область значений влияющей величины, в пределах которой изменением результата измерений под ее воздействием можно пренебречь в соответствии с установленными нормами точности.

Пример - Нормальная область значений температуры при поверке нормальных элементов класса точности 0,005 в термостате не должна изменяться более чем на ±0,05 °С от установленной температуры 20 °С, т.е. быть в диапазоне от 19,95 до 20,05 °С

4 рабочая область значений влияющей величины;

рабочая область

Область значений влияющей величины, в пределах которой нормируют дополнительную погрешность или изменение показаний средства измерений

5 рабочие условия измерений

Условия измерений, при которых значения влияющих величин находятся в пределах рабочих областей.

Примеры:

1 Для измерительного конденсатора нормируют дополнительную погрешность на отклонение температуры окружающего воздуха от нормальной.

2 Для амперметра нормируют изменение показаний, вызванное отклонением частоты переменного тока от 50 Гц (50 Гц в данном случае принимают за нормальное значение частоты)

6 рабочее пространство

Часть пространства (окружающего средство измерений и объект измерений), в котором нормальная область значений влияющих величин находится в установленных пределах

7 предельные условия измерений;

предельные условия

Условия измерений, характеризуемые экстремальными значениями измеряемой и влияющих величин, которые средство измерений может выдержать без разрушений и ухудшения его метрологических характеристик


Список используемой литературы

 

·  Я. И. Френкель. Кинетическая теория жидкостей. — Л.: «Наука», 1975.

Ссылки

·  Аринштейн А., Сравнительный вискозиметр Жуковского Квант, № 9, 1983.

·  Динамическая и кинематическая вязкость жидкостей — обзор методов и единиц измерения вязкости.

·  R.H. Doremus. J. Appl. Phys., 92, 7619-7629 (2002).

·  M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).

·  M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).

Булкин П. С. Попова И. И., Общий физический практикум. Молекулярная физика


Информация о работе «Измерение вязкости»
Раздел: Физика
Количество знаков с пробелами: 54252
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
19011
0
7

... метод вискозиметрии), так и вступить во взаимодействие с вязкой жидкостью, что плохо отразится на точности данных измерения вязкости. Относительная погрешность измерений при использовании капиллярного вискозиметра составляет 0,1-2,5% Вискозиметр ротационный В вискозиметре ротационном исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы ( ...

Скачать
30324
7
8

... радиус r , длительность течения Dt, коэффициент вязкости h, длина трубы l. На основании этого соотношения разработан и широко применяется метод измерения вязкости жидкостей и газов - метод Пуазейля. [3]  Для газов метод предполагает измерение расхода газа при его ламинарном протекании по гладкому, тонкому, капиллярному каналу с известными размерами и при контролируемой разности давлений. В ...

Скачать
10785
2
44

... для определения вязкости по методу Стокса. 6) Какие условия должны выполняться при измерении вязкости методом Стокса? 7) Записать формулу Пуазейля. 8) Опишите устройство и принципы работы медицинского вискозиметра. 9) Выведите расчетную формулу для определения вязкости жидкости с помощью медицинского вискозиметра. VII. Задания для самопроверки и самоконтроля исходных базисных знаний и ...

Скачать
173238
9
10

... частиц от 1,2 до 0,3 мм - и в мешалку известкового молока. Из мешалки насосом подают на дефекацию. 3.1. Задачи исследования Темой данной работы является «Снижение вязкости растворов мелассы с помощью МГД». Изучение вопросов влияния ПАВ различного химического строения на различные технологические процессы в сахарном производстве представляет значительный интерес. ПАВ используют на многих этапах ...

0 комментариев


Наверх