3.3 ТЕПЛОВОЙ РАСЧЁТ И ТАБЛИЦЫ ТЕПЛОВОГО БАЛАНСА ОСНОВНОГО АППАРАТА – АЦЕТОЛЯТОРА

Режим ацеталятора:

1.  Охлаждение поливинилового спирта от 600 до 100С – 4 часа:

– охлаждение водой от 600 до 20°С – 3 часа;

– охлаждение рассолом от 200 до 10°С – 1 час.

2.Нагрев смеси от 100 до 550С – 11 часов.

3.Выдержка смеси при 55°С – 1 час.

4. Охлаждение смеси до 25°С – 3 часа.

В качестве хладагентов используют холодную воду и раствор СаСl2. Вода является наиболее распространенным охлаждающим агентом. Её достоинства: высокая теплоёмкость; большой коэффициент теплопередачи и доступность. Для более быстрого охлаждения применяется раствор СаСl2 – смесь, которая со льдом дает низкую температуру (– 550С). При пуске холодной воды тепло отводится:

От аппарата, кДж/сут:

Qапп. = Gапп. • с • (tн – tк) = 25930 • 0,5028 • (60 – 20) = 521504,16

где: tн – начальная температура = 600С;

tк – конечная температура = 200С;

с – теплоёмкость материала = 0,12 • 4,19 = 0,5028 кДж/кг•К [из регламента КХЗ]

Gапп.– масса аппарата = 25930 кг

От рубашки, кДж/сут:

Qруб. = Gруб. • с • (tн – tк) = 3700 • 0,5028 • (60 – 20) = 74414,40

Qсм. =(Gсм. / n)• ссм.• (tн – tк)=(184846,21 / 6) • 2,41 • (60 – 20)= 2969862,44 кДж/сут

Определяем тепловую нагрузку, кДж/сут:

Qнагр. = 521504,16 + 74414,40 + 2969862,44 = 3565781,00

Охлаждение водой ведётся 3 часа, кДж/сут:

Qнагр. = 3565781,00 / 3 = 1188593,67

Определяем расход охлаждающей воды:

W = Qнагр. / своды • (t2ср. – t) =1188593,67 / 4,19 • (17,24 – 12) = 53893,30 кг/ч = 54 м3

где: своды – теплоёмкость воды = 1 • 4,19 = 4,19 кДж/кг•К [из регламента КХЗ]

Вода на охлаждение поступает с температурой 120С, средняя конечная температура охлаждения воды t2 = 220С.

t2ср= t1 + ∆tср • 2,3 lgA

200  600

120220

 80 380

A = (T1 – t2) / (T2 – t1)

∆tср = T1 – T2 / [2,3 lg (T1 – t1) / (T2 – t1)] • (A – 1) / (2,3 A lgA)

∆tср = 60 – 20/ [2,3 lg (60 – 12) / (20 – 12)] • (1,26 – 1) / (2,3 • 1,26 lg1,26) =

= (40 / 1,79) • (0,26 / 0,29) = 19,80C

t2ср = 12 + 19,8 • 2,3 lg1,26 = 17,240С

При пуске рассола тепло отводится от аппарата, кДж:

Qапп. = 25930 • 0,5028 • (20 – 10) = 130376,04

Qруб. = 3700 • 0,5028 • (20 – 10) = 18603,60

Qсм. = 184846,21 • 2,41 • (20 – 10) = 4454793,66

Qнагр. = 130376,04 + 18603,60 + 4454793,66 = 4603773,30

Рассол на охлаждение поступает с температурой (–140С) и уходит с температурой (–120С).

Определяем расход рассола,

W = Qнагр. / своды • (tк. – tн.) =4603773,30 / 2,73 • (14 – 12) = 843181,92 кДж/ч

Нагрев смеси от 10 до 550С:

Qнагр. = Qапп. + Qсм. + Qпот.

Qапп. = 25930 • 0,5028 • 45 = 596692,18 кДж

Qпот. = Qпот. изв. + Qпот. неизв.

Qпот. = αобщ. • τ • (tст. – tвозд.)

αобщ. = 8,4 + 0,06 • (tст. – tвозд.)

где: tвозд. = 200С

Температура нагруженной неизолированной стенки (–38). Температура нагруженной изолированной стенки (– 260С).

α1 = 8,4 + 0,06 • (38 – 20) = 9,48 • 4,19 = 39,72 кДж/м2•ч•гр.

α2 = 8,4 + 0,06 • (26 – 20) = 8,76 • 4,19 = 36,70 кДж/м2•ч•гр.

Определяем потери тепла, кДж:

Qпот. неиз. = 39,72 • 8,8 • (38 – 20) = 6305

Qпот. изв. = 36,70 • 25,2 • (26 – 20) = 5549

Qпот. = 6305 + 5549 = 11854

Qсм. = (184846,21 / 6) • 2,41 • 45 = 3341095,25

Потери тепла в окружающую среду компенсируется поступающим теплом для выдержки смеси в течение часа при t = 550С, кДж:

Qнагр. =596692,18 + 3341095,25 + 11854 = 3949641,43

Нагрев ведётся горячей водой в течение 11 часов, кДж:

3949641,43 / 11 = 359058,31

Расход горячей воды

W = Qнагр. / своды • (Т1 – t2ср.) =359058,31 / 4,19 • (80 – 62,7) = 4953,42 кг/ч = 5 м3

где: своды – теплоёмкость воды = 1 • 4,19 = 4,19 кДж/кг•К [из регламента КХЗ]

t2ср. – средняя конечная температура сходящей воды;

Т1 = 800С

t2ср = Т1 + ∆tср • 2,3 lgA

A = (T1 – t2) / (T2 – t1) = (80 – 55) / (70 – 55) = 1,66

∆tср = t2 – t1 / [2,3 lg (T1 – t1) / (T1 – t2)] • (A – 1) / (2,3 A lgA)

∆tср = 55 – 10/ [2,3 lg (80 – 10) / (80 – 55)] • (1,66 – 1) / (2,3 • 1,66 lg1,66) = 340C

T2ср = 80 – 34 • 2,3 lg1,66 = 62,70С

Определяем необходимую площадь теплообмена аппарата, для этого необходимо рассчитать коэффициент теплоотдачи:

Определяем теплоту реакции по энтальпии сгорания:

По уравнению Коновалова, кДж/моль:

gm = 204,2n + 44,4m + ∑X = Hсгор. = 204,2 • 29 + 44,4 • 9 + 464,5 = 6785,9 [14, с. 26]

где: n – число атомов кислорода, необходимое для полного сгорания вещества;

m – число молей, образующейся воды;

Х – поправка (термическая характеристика) постоянная в пределах гомологического ряда.

Поправка: С–С = 6 • 0 = 0 [14, с. 269]

R–O–Rٰٰ = 3 • 87,9 = 263,7

R–CO–Rٰ = 4 • 50,2 = 200,8

6785,9 / 193 = 35,2 кДж/кг

СН3 – СН2 – СН2 – СНО + 5,5О24СО2 + 4Н2О

По уравнению Коновалова, кДж/моль:

gm = 204,2n + 44,4m + ∑X = Hсгор. = 204,2 • 12 + 44,4 • 4 + 75,3 = 2703,3

Поправка: С–С = 3 • 0 = 0

R–СН=О = 75,3 [14, с. 269]

2703,3 / 72 = 37,5 кДж/кг

– CH2 – CH – CH2 – CH – CH2 – CH – CH2 – CH – + 25,5О213СО2 + 12Н2О

Поправка: С–С = 10 • 0 = 0 [14, с. 269]

R–O–Rٰٰ = 5 • 87,9 = 439,5

По уравнению Коновалова, кДж/моль:

gm = 204,2n + 44,4m + ∑X = Hсгор. = 204,2 • 51 + 44,4 • 12 + 439,5 = 11386,5

11386,5 / 260 = 43,8 кДж/кг

Определяем энтальпию сгорания, кДж/кг:

1. gp = ğ1 – ∆n • R • T = 35,2 – (10 – 9 – 12) • 8,314 • 10–3 • 298 = 62,5

∆Н298 = – 62,5

2. gp = 37,5 – (4 – 4 – 5,5) • 8,314 • 10–3 • 298 = 51,1

∆Н298 = – 51,1

3. gp = 43,8 – (13 – 12 – 25,5) • 8,314 • 10–3 • 298 = 104,5

∆Н298 = – 104,5

Определяем изменение энтальпии реакции энтальпии сгорания, кДж/кг:

∆Н298 = ∑∆Н298 (нач) – ∑∆Н298 (кон) = (–62,5) + (–51,1) – (–104,5) =9,1 • 103 / 7010 = 1,3

Определяем тепловую нагрузку, кДж/сут:

∆Qнагр. = 1,3 • 22485,06 = 29230,60

Определяем тепло выносимое из аппарата с продуктами реакции, кДж/сут:

22485,06 • 2,41 • 55 = 2980394,70

Потери тепла в окружающую среду составляют 5% от вносимого тепла, кДж/сут:

3595011,6 • 0,05 = 179750,58

Определяем необходимую площадь теплообмена аппарата, для этого необходимо рассчитать коэффициент теплоотдачи:

К = 1 / (1 / α1 + σ / λ + 1 / α2)

Определяем коэффициент теплоотдачи между теплом и стенкой аппарата:

S = 3,14 / 4 • (3,442 – 3,42) = 0,21 м2

W = z / (3600 • S • ρ) = 6800 / (3600 • 0,21 • 1000) = 0,09 м/с

Re = w • ℓ• ρ / μ = 3 • 3,9• 1000 / 0,32 • 10–3 = 36562500 – режим движения устойчивый турбулентный

где: λ = 0,515 • 1,16 Вт/м;

μ = 0,801 • 10–3 н•сек/м2; [12, с.805]

ρ = 1000 кг/м3;

ℓ – длина рубашки = 3,9 м;

с – теплоёмкость воды = 0,999 • 4,19 кДж/кг•К [12, с.808]

Pr = μ • с / λ = 0,801 • 10–3 • 0,999 • 4,18 / 0,515 • 1,16 = 0,005

Nu = 0,023 • Re0,7 • Pr0,43 = 0,023 • 365625000,7 • 0,0050,43 = 461,8

α1 = Nu. • λ / ℓ = 461,8 • 0,515 • 1,16 / 0,04 = 6897 Вт/м2•К

Определяем коэффициент теплоотдачи от стенки аппарата к реакционной массе. Масса перемешивается мешалкой:

n – число оборотов мешалки = 180об/мин = 3 об/сек; [из регламента]

d – диаметр ометаемой части мешалки = 1,42 м;

ρсм = 917,2 кг/м3;

μ = 2,6 • 10–3 н•сек/м2;

λ = 0,37 • 1,16 Вт/мк;

с = 2,56 кДж/кг•К

Reмеш = n • d2• ρ / μ = 3 • 1,422• 917,2 / 2,6 • 10–3 = 2133972 – режим движения устойчивый турбулентный

Prмеш = μ • с / λ = 2,6 • 10–3 • 2,56 / 0,37 • 1,16 = 0,02

Nu = 0,36 • Re0,57 • Pr0,33 = 0,36 • 21339720,57 • 0,020,33 = 1753,9

α2 = Nu. • λ / ℓ = 1753,9 • 0,37 • 1,16 / 3,35 = 224,7 Вт/м2•К

К = 1 / (1 / 6897+ 0,004 / 40 + 1 / 224,7) = 238 Вт/м2•К

Определяем поверхность теплообмена, м2:

F = ∆Q/ (К • ∆tср• nапп.) = 434866,32 / (238 • 15 • 6) = 20,3

где: nапп. – количество ацеталяторов = 6 шт.

100  300

300400

 200 100

∆tср = (20 + 10) / 2 = 150С

Определяем поверхность теплообмена подобранного аппарата, м2:

Fапп. = π • d • ℓ = 3,14 • 3,35 • 2,25 = 23,7

Поверхность подобранного аппарата обеспечит подвод и отвод тепла реакции.

3.4ВЫБОР И РАСЧЁТ ОСТАЛЬНОГО ОСНОВНОГО И
ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ. НАЗНАЧЕНИЕ КАЖДОГО ВИДА ОБОРУДОВАНИЯ, КРАТКОЕ ОПИСАНИЕ УСТРОЙСТВА, ПРОИЗВОДИТЕЛЬНОСТЬ И РАСЧЁТ КОЛИЧЕСТВА К УСТАНОВКЕ

Основным аппаратом является ацеталятор. Он представляет собой ёмкость объёмом 40 м3, рабочее давление в аппарате 3 атм., температура среды 550С. Средой является масляный альдегид, поливиниловый спирт, соляная кислота. Аппарат снабжён рубашкой для обогрева и имеет эмалевое покрытие. Эмалированное покрытие отличается высокой коррозионной стойкостью и обеспечивает максимальную чистоту перерабатываемых продуктов. Эмалированная поверхность устойчива к воздействию щелочных растворов, а также большинства неорганических и органических кислот любых концентраций и их солей. Аппарат имеет пропеллерную мешалку с числом оборотов 120 об./мин. В днище аппарата предусмотрен вентиль для периодического выпуска продукта.

Механический расчёт мешалки:

Определяем критерий Рейнольдса:

Re = ρ • n • d2 / μ = 963 • 3 • 1,52 / 3,2 • 10–3 = 2031328 – режим турбулентный

ρ– плотность реакционной смеси = 963 кг/м3;

d – диаметр мешалки = 1,5 м;

n — частота вращения мешалки = 3 об/сек

Определяем мощность, потребляемую на перемешивание среды, Вт:

Nmax = Kn • ρ • d5 • n3 = 0,17 • 963 • 1,55 • 33 = 23772,7

где: Кn= 0,17 — критерий мощности

Рассчитаем мощность на валу мешалки, Вт:

NB = K1 • K2 • (∑K + 1) • Nmax= 0,75 • 1,4 • (2,4 + 1) • 23772,7 = 84868,54

где: К1 = 0,75 – коэффициент заполнения;

К2 = 1,4 – коэффициент увеличения мощности при пуске или в результате повышенной вязкости среды;

∑K = 2,4 – сумма коэффициента увеличения мощности, вызываемая наличием в аппарате вспомогательных устройств

N = Kn • ρ • d5 • n3 = 0,37• 963 • 1,55 • 33 = 73054,68

где: Кn = 0,37 — критерий мощности

N2 = K1 • K2 • (∑K + 1) • N= 0,75 • 1,4 • (2,4 + 1) • 73054,68 = 260805,2

N2 + NB = 260805,2 + 84868,54 = 345673,7

Крутящий момент на валу мешалки:

mk = 0,163 + N2 +NB/ n = 0,163 + 345673,7 / 2 = 172836,93

Расчёт диаметра вала мешалки, мм:

[σ]к = 1,76 • 108 мм2

d = 1,71 • ∑mk / [σ]k • К + С = 1,71 • 172836,93 / 1,76 • 108 • 9 + 5 = 187



Информация о работе «Производство поливинилбутираля»
Раздел: Химия
Количество знаков с пробелами: 85356
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
42207
0
9

... и окиси тетрафторэтилена посредством конденсации фторсодержащих веществ в ловушках при -120 °С и атмосферном давлении с последующей низкотемпературной ректификацией [5].   1.4 Обезвреживание газовых выбросов в производстве поливинилхлорида Винилхлорид поступает в атмосферу при вскрытии и чистке полимеризаторов и другого емкостного оборудования, при выделении ПВХ из суспензии в процессе ...

Скачать
26074
8
0

... ), капролактам (ГОСТ 7850-86), лапрол (ТУ 2226-023-104880-57-95). Основное содержание экспериментальной части Глава 3. Физико-химические основы технологии поликонденсационного наполнения базальто-, стекло- и углепластиков Сущность процесса поликонденсационного наполнения заключается в том, что для формирования полимерной матрицы пропитка нитей осуществляется не ФФС (традиционный способ), а ...

Скачать
44859
0
1

... с фенольными полимерами поливинилбутираль используют для приготовления универсальных клеев, например широко известного марки БФ. Глава 2. МЕТОДЫ ОЧИСТКИ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ОТХОДЫ ПОЛИВИНИЛОВОГО СПИРТА переработка отход поливиниловый спирт Сточные воды ряда производств поливинилацетатных пластмасс (суспензионного ПВА, ПВАД, сополимерных дисперсий ВА с этиленом — СВЭД и дибутилмалеинатом ...

Скачать
156088
5
4

... , водостойкость удовлетворительная. Более теплостоек клей ВС-10Т, который отличается высокими характеристиками длительной прочности, выносливости и термостабильности при склеивании металлов и теплостойких неметаллических материалов. Фенолокремнийорганические клеи содержат в качестве наполнителей асбест, алюминиевый порошок и др. Клеи являются термостойкими, они устойчивы к воде и тропическому ...

0 комментариев


Наверх