Характеристика свойств нобелия
Нобелий
102 | |
No | 2 9 31 32 18 8 2 |
НОБЕЛИЙ | |
[259] | |
5f147s2 |
В 1955 г. была заполнена 101-я клетка таблицы Менделеева. Следующим, естественно, должен был стать синтез 102-го элемента.
В 1956 г. к этой работе почти одновременно приступили исследователи из Нобелевского института физики в Стокгольме (в группе работали английские, шведские и американские ученые) и из Института атомной энергии в Москве. Вслед за ними в работу по синтезу 102-го элемента включились ученые Радиационной лаборатории Калифорнийского университета (Беркли).
Не прошло и года, как в научных журналах появились статьи, из которых следовало, что элемент №102 синтезирован.
Эти сообщения подхватили газеты, о новом элементе узнал весь мир. Но ясности, необходимой для окончательного утверждения нового элемента в периодической системе, не было еще долгие годы. Объясняется это не только трудностями, возрастающими с каждым новым шагом в трансурановую область, но и в какой-то мере поспешностью заключений.
В итоге для окончательного ответа на вопрос: «Что же такое элемент №102?» – понадобилось десять лет. Десять лет работы исследователей разных лабораторий и разных стран.
Исторически все работы по получению и исследованию 102-го элемента можно разделить на два периода: к первому относятся работы 1956...1959 гг., выполненные в лабораториях Стокгольма, Москвы и Беркли, ко второму – работы в Объединенном институте ядерных исследований в Дубне (1963...1966 гг.).
Общее, что объединяет все эти работы, – метод синтеза. Получить изотопы 102-го элемента можно было только в ядерных реакциях с участием тяжелых ионов, бомбардируя такими ионами мишени из урана и некоторых трансурановых элементов.
Разными путями
Вообще говоря, существует несколько способов получения новых элементов. В одном из них используется облучение урана или плутония мощными нейтронными потоками в стационарных или импульсных (взрыв ядерного устройства) условиях. При этом образуются переобогащенные нейтронами изотопы, подверженные бета-распаду. В результате серии таких распадов они превращаются в элементы с большими порядковыми номерами. Другой метод основан на облучении ближайших тяжелых трансурановых мишеней заряженными частицами. При обстреле ядра протонами его заряд (а, следовательно, и номер элемента) может увеличиться на единицу, при бомбардировке ускоренными альфа-частицами – на две. В частности, этим методом был впервые получен менделевий. И наконец, третий метод заключается в использовании не очень тяжелых мишеней (уран, плутоний, кюрий и др.) и тяжелых бомбардирующих частиц (ионы азота, углерода, неона и других элементов вплоть до ксенона сейчас и до урана в будущем). Реакции с участием тяжелых ионов позволяют увеличить заряд ядра на несколько единиц. Для синтеза 102-го элемента первый и второй способы непригодны, единственно приемлемым был метод тяжелых ионов. Изотопы 102-го элемента могут образовываться в нескольких реакциях, в таких, например:
23892U + 2210Ne → 256102 + 410n,
24194Pu + 168O → 253102 + 410n,
24395Am + 157N → 254102 + 410n,
24696U + 126C → 254102 + 410n, и т.д.
Проведение подобных реакций, улавливание и регистрация их продуктов связаны с огромными экспериментальными трудностями. Силы электростатического отталкивания между ядрами заставляют увеличивать энергию бомбардирующих частиц до десятков мегаэлектронвольт – иначе ядра не смогут слиться. Образованные ядра оказываются очень сильно «нагретыми» (энергия их возбуждения достигает нескольких десятков мегаэлектронвольт) и стремятся «остыть», выбрасывая различные частицы. Но новый элемент будет образован лишь в том случае, когда ядро выбросит только нейтроны. Если оно выбросит хоть один протон, новый элемент не удастся зарегистрировать никакими способами: его попросту не будет, ведь номер элемента определяется числом протонов в ядре. Этим объясняются исключительные требования, предъявляемые и к мишени, и к пучкам тяжелых ионов. Все это, конечно, крайне усложняет эксперименты, однако иного пути синтеза 102-го элемента у физиков не было.
Два подхода к атому
Трудно получить атомы новых трансуранов, но когда имеешь дело с элементами второй сотни, не легче бывает доказать, что тебе действительно удалось получить их изотопы и какие именно.
Ожидалось, что время жизни изотопов 102-го элемента будет очень малым: в лучшем случае минуты, чаще секунды и доли секунд. Поэтому исследователям не приходилось рассчитывать на традиционный метод химической идентификации этого элемента. Нужны были новые методы – очень быстрые (экспрессные, как говорят исследователи), чувствительные и точные. По-видимому – физические.
Если вспомнить, что элемент есть совокупность атомов, состоящих из ядра и электронных оболочек, то легко понять разницу в химическом и физическом подходах к изучению элемента. Химики изучают электронные оболочки атома, его способность отдавать или присоединять электроны при взаимодействии с другими атомами. Они устанавливают порядковый номер элемента и его место в периодической системе по особенностям строения внешней части атома. Физики определяют то же самое, но исследуют при этом сами ядра и идентифицируют элемент по его ядерным свойствам.
Химические свойства актиноидов (элементов №90...103) настолько близки, что различить их можно только с помощью очень тонких аналитических методов, сравнительно медленных, требующих большего времени, чем периоды полураспада элементов второй сотни.
Химические методы идентификации элементов были приемлемы при синтезе изотопов, жизнь которых измерялась десятками минут и более (а также 104-го и 105-го элементов, которые по химическим свойствам значительно отличаются от соседних). Но для 102-го и 103-го элементов разработка надежных «быстрых» методов химической идентификации потребовала больших и длительных усилий.
Физические методы позволяют установить заряд ядра и массовое число синтезированного изотопа и изучить его радиоактивные свойства. Они основаны на быстром улавливании ядер – продуктов реакции, на выносе их из зоны облучения и переносе к детекторам излучения для регистрации радиоактивного распада. Эти методы неразрывно связаны с анализом закономерностей ядерных реакций.
Например, при определенных значениях энергии возбуждения из образовавшегося ядра могут «испариться» несколько нейтронов. Каждый нейтрон уносит часть энергии возбуждения – примерно 10...12 МэВ. Для «охлаждения» и относительной стабилизации ядра обычно необходим вылет 4...5 нейтронов. Кривая зависимости выхода ядер нового изотопа (или нового элемента) от энергии налетающих ионов имеет вид колоколообразной кривой: ее вершина соответствует энергии – наибольшего выхода ядер, а ширина «колокола» на половине высоты составляет 10...12 МэВ. Эта кривая называется кривой выхода; изучение ее формы дает достаточно оснований для распознания изотопа. Для проверки применяют так называемые перекрестные облучения, цель которых показать, что исследуемый изотоп появляется только в одной определенной комбинации мишень – частица, при определенной энергии бомбардирующих ионов. Если же условия опыта меняются (замена мишени или частицы, изменение энергии ионов), то этот изотоп не должен регистрироваться.
Но тут важно еще одно обстоятельство: нужно знать, какому виду радиоактивного распада подвержены новые ядра. Физик должен предвидеть, какие продукты образуются при радиоактивном распаде новых ядер, и иметь мужество вносить необходимые поправки в расчеты и в эксперимент, если «улов» окажется не тем, что ожидалось.
Изотопы 102-го элемента, которые могут образоваться в реакциях с тяжелыми ионами, подвержены трем видам радиоактивного распада. Это – альфа-распад, спонтанное деление и захват орбитальных электронов. Первый вид наиболее вероятен.
При альфа-распаде ядро любого изотопа элемента №102 превращается в ядро одного из изотопов фермия (элемент №100) и ядро гелия (альфа-частицу). Энергия альфа-частиц при этом будет строго определенной. Следовательно, зарегистрировать искомое ядро можно двумя способами: либо измерением энергии образовавшихся альфа-частии (Eб) и периода полураспада (T1/2), либо наблюдением дочерних продуктов распада – ядер атомов фермия. Однако в первом случае существенной помехой определения будет фон, обусловленный альфа-распадом короткоживущих изотопов других элементов. При этом образуются альфа-частицы, энергия которых близка к энергии альфа-частиц, возникших при распаде ядер 102-го элемента. В частности, «густой» фон появляется, если в материале мишени или других деталей установки, подвергающихся облучению, есть примеси свинца, висмута, ртути. Вероятность фоновых реакций значительно больше (иногда в миллионы раз) вероятности реакции, приводящей к образованию 102-го элемента. Поэтому тщательная очистка вещества мишени от микропримесей свинца и близлежащих элементов и сверхчистые материалы для изготовлении установки – обязательные условия чистого опыта по синтезу 102-го элемента.
Помехи и трудности неизбежны и при определении дочерних продуктов альфа-распада ядер 102-го элемента
К сожалению, многие из перечисленных трудностей и серьезнейшие требования к условиям эксперимента стали очевидными уже после того, как появились первые сообщения об открытии 102-го элемента.
Первый этап
Первая статья «Получение нового элемента 102» была направлена в редакцию «Physical Review» в июле 1957 г. и опубликована в сентябрьском номере этого журнала. Объединенная американо-англо-шведская группа сообщала об опытах по облучению мишени из смеси изотопов кюрия (244Cm – 95%, 245Cm – 1% и 246Cm – 4%) ионами углерода-12 и углерода-13, ускоренными на циклотроне Нобелевского института физики. Ядра – продукты реакции – вылетали из мишени, получив энергию налетающего иона. Их улавливали на специальную фольгу-сборник, которую потом сжигали на платине. Радиоактивный остаток смывали с платины и подвергали химическому анализу методом ионного обмена. После двенадцати получасовых облучений во фракции, соответствующей элементу №102, было зарегистрировано около 20 альфа-частиц с энергией 8,5±0,1 МэВ. Период полураспада составлял примерно 10 минут.
Многое в этой статье вызывало недоумение, и прежде всего то, что авторы не смогли точно указать массовое число изотопа (оно определяется суммой протонов и нейтронов в ядре). Объяснялось это двумя причинами. Во-первых, не удалось выяснить зависимость выхода продукта от энергии ионов из-за неопределенности этой характеристики потока. Вторая причина – довольно сложный изотопный состав материала мишени.
Сомнение в правильности выводов вызывал и тот факт, что эффект, приписанный элементу №102, наблюдался лишь на трех из шести использованных мишеней, да и эти три мишени не давали эффекта после трех недель работы. Почему – непонятно. В чистом опыте так быть не должно.
Настораживала и большая величина сечения реакции (большой выход нового излучателя), поскольку пучки ионов были маломощными (0,03...0,1 мкА). Но особенно сомнительным было большое время жизни изотопа – период полураспада около 10 минут. Тем не менее авторы работы заявили об открытии элемента №102 и предложили назвать его нобелием (символ No) в честь Альфреда Нобеля.
Не прошло и года, как американские ученые из Беркли опубликовали статью «Попытки подтвердить существование десятиминутного изотопа элемента 102», в которой сообщили о безуспешных поисках долгоживущей активности с указанными в Стокгольме свойствами. Эта работа была выполнена очень тщательно и более точно, чем в Швеции. Использовались кюриевые мишени того же изотопного состава, те же самые ионы 12С и 13С, однако интенсивность пучка была больше, а энергетический спектр пучка был монохроматическим (т.е. пучок состоял из строго одинаковых по энергии ионов).
Выход всех изотопов более легких элементов в этом эксперименте оказался гораздо больше, чем в стокгольмском, но активность, приписанная элементу №102, не наблюдалась...
Примерно в то же время, что и в Швеции, в Москве также были проведены опыты по синтезу короткоживущих изотопов 102-го элемента. Для получения нового элемента изотопы плутония 241Pu и 239Pu облучали ионами кислорода-16 с энергией около 100 МэВ. Изучался альфа-распад продуктов ядерных реакций классическим методом ядерных фотоэмульсий. В спектре альфа-частиц наряду с группами, обусловленными распадом известных элементов, была отмечена группа с энергией 8,9±0,4 МэВ. Было показано, что период полураспада этого изотопа меньше 40, но больше 2 секунд. На основании теоретических оценок предполагалось, что наиболее вероятна реакция с «испарением» четырех нейтронов:
24194Pu + 168O → 253102 + 410n.
Через несколько месяцев в Беркли были поставлены опыты по синтезу еще одного изотопа – 254102. Американские физики бомбардировали мишени из кюрия-246 ионами углерода-12. Они установили, что период полураспада изотопа 254102 близок к 3 секундам, а энергия альфа-частиц равна 8,3 МэВ. В опубликованной ими статье указывалось также, что ядра изотопа 254102 испытывают спонтанное деление примерно в 30 случаях из 100.
Для идентификации 254102 авторы разработали оригинальный метод, которым доказывалось, что дочерние ядра фермия-250 с хорошо известными свойствами могут появляться на вторичном сборнике ядер отдачи только в результате альфа-распада изотопа 254
... наград за достижения в различных областях человеческой деятельности, оставляют много неясностей. Известно лишь то, что документ в окончательном виде представляет собой одну из редакций прежних многочисленных нобелевских завещаний. *** Альфред Нобель всегда оставался пацифистом, до конца жизни испытывая мучительные угрызения совести от того, что его изобретения использовались в военных цел
... развития страны. В среднесрочном периоде основное внимание должно уделяться качественным характеристикам функционирования предприятий и отраслей – конкурентной политике. Стратегические задачи такой политики были сформулированы Президентом Российской Федерации в выступлении «О стратегии развития России до 2020 года»: · «развитие новых секторов глобальной конкурентоспособности, прежде ...
... –1723 гг. Естественно, он не ставил единственной целью присвоение нефтяных месторождений, однако, интерес к нефти играл не последнюю роль при принятии решения о военных действиях. 3. Правовые основы развития отечественной нефтяной отрасли в ХVП-Х1Х вв. Российская история богата именами выдающихся отечественных предпринимателей. Они служили государству и своему народу. Благодаря их труду и ...
... физиками Александром Прохоровым и Николаем Басовым.) Еще один американец, сотрудник корпорации «Техас Инструментс» Джек Килби, удостоен награды за работы в области интегральных схем. Итак, кто же он, новый российский нобелевский лауреат? Жорес Иванович Алфёров родился в белорусском городе Витебске. После 1935 года семья переехала на Урал. В г. Туринске А. учился в школе с пятого по восьмой ...
0 комментариев