2. Методики и подходы построения систем ИИ
Существуют различные подходы к построению систем ИИ – логический подход, структурный, эволюционный, имитационный. Это разделение не является историческим, когда одно мнение постепенно сменялось другим, и различные подходы и методики существуют параллельно и сегодня. Поскольку по-настоящему полноценных систем искусственного интеллекта в настоящее время нет, то нельзя и утверждать, что какой-то подход является правильным, а какой-то – нет.
Для начала рассмотрим логический подход. Человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных. Основой для данного логического подхода служит Булевая алгебра. Каждый программист знаком с нею и с её использованием, хотя бы на примере логического оператора IF (если). Свое дальнейшее развитие Булевая алгебра получила в виде исчисления предикатов – в котором она расширена за счёт введения предметных символов, отношений между ними, кванторов существования и всеобщности.
Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом (правила логического вывода как отношения между ними). Каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машины доказательства теорем. Можно утверждать, что выражений алгебры не хватит для полноценной реализации ИИ, но стоит вспомнить, что основой всех существующих ЭВМ является бит – единица информации (или значение ячейки памяти), которая может принимать значения только логического 0 и 1. Было бы логично предположить, что всё, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не упоминается о том, сколько на это уйдёт времени. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечёткая логика. Её особенностью является то, что правдивость высказывания может принимать кроме значений да/нет (1/0) ещё и промежуточные значения – «не знаю» (0.5), «скорее да, чем нет» (0.75) и «скорее нет, чем да» (0.25). Такой подход больше похож на мышление человека, поскольку человек не часто отвечает только «да» или «нет».
Для большинства логических методов характерна большая трудоёмкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Данный подход требует эффективной реализации вычислительного процесса, и удовлетворительные результаты работы обычно гарантируются только при сравнительно небольшом размере базы данных.
Под структурным подходом подразумеваются попытки построения ИИ путём моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Ф. Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, известные под общим названием «нейронные сети» (НС). Модели эти различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных вариаций НС можно назвать НС с обратным распространением ошибки, сети Хопфилда и стохастические нейронные сети.
Нейронные сети наиболее успешно применяются в задачах распознавания образов, в том числе сильно зачумленных (нечётких). Также имеются примеры успешного применения НС для построения собственно систем ИИ.
Для моделей, построенных на основе строения человеческого мозга характерна не слишком большая выразительность, оприделённое распараллеливание алгоритмов и, благодаря последнему, высокая производительность параллельно реализованных НС. Для таких сетей характерно одно свойство, которое делает из очень схожими с человеческим мозгом – нейронные сети работают даже при условии недостаточной информации об окружающей среде, т.е. как и человек, они поставленный вопрос могут отвечать не только «да» и «нет» но и «не знаю точно, но скорее нет», «не знаю точно, но скорее да».
Довольно большое распространение получил эволюционный подход. При построении систем ИИ по такому подходу, основное внимание уделяется построению начальной модели и правилам, по которым она (модель) может изменяться (эволюционировать). Модель может быть составлена по самым различным методам, это могут быть и НС и набор логических правил и любая другая модель. После этого мы запускаем ИИ, и он, на основании проверки моделей, отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.
Эволюционных моделей, как таковых, не существует, есть только эволюционные алгоритмы обучения, но модели, полученные при эволюционном подходе, имеют некоторые характерные особенности, что позволяет выделить их в отдельный класс. Такими особенностями являются перенесение основного внимания разработчика с построения модели на алгоритм её модификации и то, что полученные модели практически не сопутствуют извлечению новых знаний о среде, окружающей систему ИИ, то есть она (система) становится «вещью в себе».
Широко используется для построения систем ИИ также имитационный подход. Данный подход является классическим для кибернетики с одним из её базовых понятий – «чёрным ящиком» (ЧЯ). Чёрный ящик – это устройство, программный модуль или набор данных, информация о внутренней структуре и содержании которого отсутствуют, но известны спецификации входных и выходных данных. Объект, поведение которого имитируется, как раз и представляет собой такой «черный ящик». Не важно, что у него внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом моделируется другое свойство человека – способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит человеку массу времени, особенно в начале его жизни. К недостаткам имитационного подхода можно отнести низкую информационную способность большинства моделей, построенных с его помощью.
Отдельно стоит отметить, что на практике четкой границы между разными подходами нет. Часто встречаются смешанные системы ИИ, где часть работы выполняется по одной методике, а часть – по другой. [5]
... из букв, написанных на карточках, которые подносили к его "глазам", напоминающие кинокамеры. Перцептрон Розенблата оказался наивысшим достижением "восходящего", или нейромодельного метода создания искусственого интеллекта. Чтобы научить перцептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая элементарная разновидность автономной работы или " ...
... возможностей ЭВМ и искусства программирования, то есть с тем комплексом научно-технических исследований, которые часто называют компьютерными науками. Второе направление искусственного интеллекта рассматривает данные о нейрофизиологических и психологических механизмах интеллектуальной деятельности и, в более широком плане, разумного поведения человека. Оно стремиться воспроизвести эти механизмы ...
ва теорем или композиции мелодий. Проблема искусственного интеллекта является сейчас одной из самых злободневных. Ею занимаются ученые различных специализаций: кибернетики, лингвисты, психологи, философы, математики, инженеры. Рассматриваются вопросы: что такое интеллект вообще и чем может являться искусственный интеллект, его задачи, сложность создания и опасения. И именно сейчас, пока ИИ еще не ...
... : машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения. Искусственный интеллект и теоретические проблемы психологии. Можно выделить две основные линии работ по ИИ. Первая связана с совершенствованием самих машин, с повышением "интеллектуальности" искусственных систем. Вторая связана с ...
0 комментариев