0 до полного удаления гидратной влаги.

Электролиз проводят в расплавленных хлоридах магния, калия, натрия и кальция, так как при электролизе водных растворов его солей из-за отрицательного потенциала магния на катоде выделяется только водород.

Схема электролизера для получения магния изображена на рисунке:

Электролизер для получения магния.

Анодами служат графитные плиты 4, катодами - стальные пластины 2. Так как плотность расплавленного электролита больше, чем плотность магния в этих же температурных условиях, то выделяющийся на катоде жидкий магний, не растворяясь в электролите, в виде капель всплывает на поверхность. На аноде выделяется газообразный хлоp, который также поднимается и выбрасывается из электролита. Во избежание взаимодействия хлора и магния и короткого замыкания анода и катода расплавленным магнием вверху устанавливают перегородку 1, которую принято называть диафрагмой. Во время электролиза расходуется хлористый магний, периодически вводимый в электролит.

Собирающийся на поверхности катодного пространства магний периодически удаляют. Выделяющийся в анодном пространстве хлор всасывают через трубы 3 и используют, например, для хлорирования окиси магния или окиси титана.

Магний можно получить электролизом чистого расплавленного безводного хлористого магния, однако высокая температура плавления, низкая электропроводность и другие неблагоприятные свойства этой соли вынуждают прибегать к электролитам более сложного состава. Практически удобнее вести электролиз карналлита, который обычно содержит в виде примеси хлористый натрий. Такой электролит обладает более низкой температурой плавления, более высокой электропроводностью и меньше растворяет магний. Поэтому при работе с ним достигается меньший расход электроэнергии.

Магниевые ванны соединяются между собой последовательно в серии по 60-100 шт. Число ванн в серии определяется напряжением источника постоянного электрического тока; напряжение ванны, которое зависит от ее конструкции, межполюсного расстояния, состава электролита, колеблется в пределах 5,5-7,5 В.

Обслуживание ванн заключается в выполнении следующих основных операций: а) питании электролитом; б) регулировании температуры; в) извлечении магния; г) удалении шлама.

Питание ванн электролитом. В процессе электролиза идет непрерывное разложение хлористого магния, поэтому для восполнения го расхода в ванну периодически вводят свежие расплавленные мористые соли. Наиболее удобно добавлять в электролит безводный Хлористый магний, получающийся при восстановлении хлорида титана магнием. В случае автономного расположения магниевого завода бишофит приходится предварительно обезвоживать. Можно вводить в ванну и безводный карналлит, но тогда необходимо сливать часть электролита, так как иначе в нем будет избыток хлорида калия. Из отработанного электролита получают калийные удобрения.

Регулирование температуры. Электролиз должен протекать при температуре 690-720 °С, при этом нижнего предела желательно придерживаться при питании ванн хлористым магнием, а верхнего - при питании карналлитом. В процессе электролиза необходимо наблюдать за температурой электролита, так как отклонение от нормы, особенно в сторону повышения, значительно ухудшает показатели Iпроцесса.

В магниевых ваннах для регулирования температуры не меняют межполюсное расстояние, как это принято при электролитическом получении алюминия, а изменяют состав, а с ним и электропроводность электролита. Так, например, чтобы поднять температуру электролита, следует залить в него больше чистого хлористого магния, что увеличит сопротивление электролита. Изменения температуры в пределах 20-30 °С можно добиться, варьируя количество отсасываемых газов из катодного пространства ванны.

В случае перегрева электролита применяют загрузку твердого хлористого натрия; при чрезмерном падении температуры, например при выключении ванны, используют подогрев электролита переменным током, опуская в катодные ячейки нихромовые спирали.

Извлечение магния из электролизера. Это обычно производят не реже одного раза в сутки, применяя вакуумные ковши. Ковш предварительно нагревается вмонтированными в него нагревательными элементами и затем подается к ваннам мостовым краном. После создания в нем разрежения 730-800 кПа в ячейку ванны опускают всасывающуютрубу и открывают клапан. Металл и часть электролита засасываются в ковш. Затем клапан закрывают и повторяют операцию в других ячейках ванны.

Удаление шлама. В электролит с хлористым магнием поступает и окись магния; кроме того, может протекать гидролиз электролита с образованием окиси магния. Она оседает на дно электролизера, увлекая за собой другие продукты и образуя шлам. Шлам удаляют один раз в два-три дня, не допуская значительного накопления его на дне ванны, так как это иногда приводит к замыканию анода с катодом и ухудшает условия осаждения магния на катоде.


Глава 4. Производство титана

Титан получают магнийтермическим способом, сущность которого состоит в обогащении титановых руд, выплавке из них титанового шлака с последующим получением из него четыреххлористого титана и восстановлении из последнего металлического титана магнием.

Сырьем для получения титана являются титаномагнетитовые руды, из которых выделяют ильменитовый концентрат, содержащий 40-45% TiO2, ~30% FeO, 20% Fe2O3 и 5-7% пустой породы. Название этот концентрат получил по наличию в нем минерала ильменита FeО*TiO2.

Ильменитовый концентрат плавят в смеси с древесным углем, антрацитом в рудно-термических печах, где оксиды железа и титана восстанавливаются.

Образующееся железо науглероживается, и получается чугун, а низшие оксиды титана переходят в шлак. Чугун и шлак разливают отдельно в изложницы.

Основной продукт этого процесса-титановый шлак. Побочный продукт этого процесса - чугун используют в металлургическом производстве. Полученный титановый шлак подвергают хлорированию в специальных печах. В нижней части печи располагают угольную насадку, нагревающуюся при пропускании через нее электрического тока. В печь подают брикеты титанового шлака, а через фурмы внутрь печи-хлор. При температуре 800 - 1250° С в присутствии углерода образуется четыреххлористый титан, а также хлориды.

Четыреххлористый титан отделяется и очищается от остальных хлоридов благодаря различию температуры кипения этих хлоридов методом ректификации в специальных установках.

Титан из четыреххлористого титана восстанавливают в реакторах при температуре 950-1000° С. В реактор загружают чушковый магний; после откачки воздуха и заполнения полости реактора аргоном внутрь его подают парообразный четыреххлористый титан. Между жидким магнием и четыреххлористым титаном происходит реакция 2Mg+TiCl4=Ti+2MgCl2.

Твердые частицы титана спекаются в пористую массу-губку, а жидкий MgCl2 выпускают через летку реактора. Титановая губка содержит 35-40% магния и хлористого магния.

Для удаления из титановой губки этих примесей ее нагревают до температуры 900-950° С в вакууме. Титановую губку плавят методом вакуумно-дугового переплава.

Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. После этого чистота титана составляет 99,6 - 99,7%. После вторичного переплава слитки используют для обработки давлением.

Упрощенная схема получения титана


Заключение

Подводя итоги, можно сделать следующий вывод: в настоящее время цветные металлы и сплавы на их основе находят весьма широкое применение. Наибольшее применение получили сплавы на основе меди, алюминия, магния. Указанные металлы в чистом виде в промышленности не применяют, но технически чистые, содержащие небольшое количество примесей, используют достаточно часто.

Медь выпускают в виде листов, лент нормальной и повышенной точности, проволоки, прутков разного сечения. Медь является основой важнейших сплавов - латуней и бронз. Сплавы меди с цинком называют латунями, а сплавы со всеми другими элементами - оловом, алюминием, бериллием и др. - бронзами.

Широко используются в народном хозяйстве сплавы меди с никелем - мелъхиоры, иногда с небольшими добавками железа и марганца, а также меди с цинком и никелем (иногда с добавлением кобальта) - нейзильберы. Мельхиоры отличаются высокой химической стойкостью в морской воде, растворах солей, органических кислотах, они весьма пластичны. Их применяют в морском судостроении, для изготовления разменной монеты, медицинского инструмента, деталей аппаратуры точной механики и др. Нейзильберы обладают высокими прочностью и коррозионной стойкостью. Они используются в производстве точных приборов, часов и т.д.

Алюминий. Благодаря ряду положительных свойств алюминия и большого количества его в земной коре (до 7,45%) он широко применяется в производстве в виде различных сплавов. Чистый алюминий из-за высокой химической активности в природе не встречается и в технике не применяется.

Алюминий - мягкий металл серебристо-белого цвета. Имеет высокие электро- и теплопроводность, большую скрытую теплоту плавления. Технически чистый алюминий выпускается нескольких марок и применяется в основном для изготовления радиоэлектронной аппаратуры (электролитических конденсаторов, фольги и др.). Сплавы алюминия применяются практически во всех отраслях промышленности (авиационной, ракетостроительной, приборостроительной и др.). Наибольшее применение имеют сплавы алюминия с кремнием, магнием и медью (литейные и деформируемые).

Лучшим деформируемым сплавов на алюминиево-медной основе является дюралюминий. Дюралюминий, имея малую плотность (2,85 г/см3), обладает высокими механическими свойствами, не уступающими свойствам низкоуглеродистых сталей. Свойства дюралюминия повышаются с проведением закалки и старения сплава.

Лучшими литейными сплавами являются силумины (на основе алюминий - кремний), из которых изготовляют детали различных приборов и радиоаппаратов, корпуса турбонасосных агрегатов и др.

Магний быстро окисляется на воздухе, имеет весьма низкие механические свойства. Поэтому как конструкционный материал он не применяется, а вводится в качестве компонента в сплавы. Магниевые сплавы делятся на деформируемые и литейные. Широкое применение магниевого литья объясняется, в частности, малой плотностью магния, что обеспечивает получение деталей малой массы.

Титан - малопрочный серебристо-серый металл. В чистом виде в технике не применяется. Введение в титан различных компонентов позволяет получать требуемые свойства сплавов.

Применяют также литейные титановые сплавы, обеспечивающие высокую плотность отливок. Эти сплавы дают малую линейную усадку, не подвержены образованию трещин в горячем состоянии, что позволяет изготовлять отливки сложной формы.

Плавка и разливка титановых сплавов производится в защитной атмосфере и вакууме.


Список использованной литературы

1.    Кузьмин Б.А., Самохоцкий А.И. Металлургия, металловедение и конструкционные материалы: учебник для механических и машиностроительных техникумов, М.: Высшая школа, 1984

2.    Браун Д.А., Разыграев А.М. Технология металлов и конструкционные материалы, М.: Высшая школа, 1965

3.    Технология металлов и других конструкционных материалов под ред. проф. Дубинина Н.П., М.: Высшая школа, 1969

4.    Архипов В.В., Касенко М.А., Ларин М.Н. и др. Технология металлов, М.: Высшая школа, 1964

5.    Никифоров В.М. Технология металлов и конструкционные материалы: учебник для средних специальных учебных заведений, Л.: Машиностроение, Ленинградское отделение, 1986.


Информация о работе «Технологические основы производства цветных металлов: меди, алюминия, магния, титана»
Раздел: Промышленность, производство
Количество знаков с пробелами: 40716
Количество таблиц: 0
Количество изображений: 11

Похожие работы

Скачать
183419
2
1

... , хранении, употреблении, к огне- и взрывоопасное, к срокам периодического осмотра, контроля, переконсервации и т.п. ЛЕКЦИЯ 4   План лекции: 4.1. Организация процесса проектирования-конструирования и освоения технологического оборудования 4.2. Стадии и этапы разработки конструкторской документации 4.1. Организация процесса проектирования-конструирования и освоения технологического ...

Скачать
292602
1
0

... Мессии, Царя Царей, Вождя, который даст им замечательное царство на земле. Но они отвергли Мессию, посланного Богом, потому что он не соответствовал их ожиданиям и желаниям. Так и эта история с Ноевым ковчегом. "Учёные люди", подобно ведущим религиозным лидерам древнего Иерусалима, ожидают и хотят увидеть "великолепный" корабль, имеющий форму баржи, на вершине вулканической горы Арарат, они не ...

Скачать
65062
7
18

... Ниже линии РS аустенит переходит в феррит, т.е. металл имеет высокую степень пластичности, но небольшую твердость и прочность. Между линиями АЕ и GS располагается зона благоприятных температур и структуры металла для ковки. При температуре нагрева 1500°С, т.е. выше линии АС, сталь пребывает в жидком состоянии. Кузнец должен уметь выбрать сталь, которая по своим качествам будет соответствовать ...

Скачать
66333
4
4

... , жестянщиков и других мастеров по металлу - истинных художников в своём деле. В XX веке на смену декоративному кованому металлу пришли сварные изделия и конструкции, что связано с развитием прокатного и штамповочного производств, художественная ковка стала упрощаться. Однако, возрождение кованого ремесла имеет огромное значение для современного декоративно-прикладного искусства. В современной ...

0 комментариев


Наверх