Содержание
Введение
1 Технико-технологический раздел
1.1 Цели и виды исследования скважин
1.2 Технология исследования скважин
1.3 Приборы и оборудование для исследования
2 Расчетно-практический раздел
2.1 Построение индикаторных диаграмм
2.2 Расчет параметров призабойной зоны и коэффициента продуктивности
Заключение
Список литературы
Введение
Кривые восстановления (падения) забойных давлений (КВД-КПД) являются одним из известных и распространенных методов гидродинамических исследовании скважин на неустановившихся режимах фильтрации.
Под гидродинамическими исследованиями скважин (ГДИС) понимается система мероприятий, проводимых на скважинах по специальным программам: замер с помощью глубинных приборов ряда величин (изменения забойных давлений, дебитов, температур во времени и др., относящихся к продуктивным нефтегазовым пластам), последующая обработка замеряемых данных, анализ и интерпретация полученной информации о продуктивных характеристиках - параметрах пластов и скважин и т д.
За последние годы были разработаны дистанционные высокоточные глубинные электронные манометры с пьезокварцевыми датчиками давления и глубинные комплексы с соответствующим компьютерным обеспечением (так называемые электронные манометры второго поколения) Применение таких манометров и комплексов позволяет использовать при анализе новые процедуры, резко улучшающие качество интерпретации фактических данных и количественно определяемых параметров продуктивных пластов. Особо остро стоят эти вопросы при разработке сложно построенных месторождений, при бурении, эксплуатации и исследовании горизонтальных скважин.
В общем комплексе проблем разработки месторождений углеводородов важное место занимает начальная и текущая информация о параметрах пласта - сведения о продуктивных пластах, их строении и коллекторных свойствах, насыщающих флюидах, геолого-промысловых условиях, добывных возможностях скважин и др. Объем такой информации о параметрах пласта весьма обширен.
Источниками сведений о параметрах пласта служат как прямые, так и косвенные методы, основанные на интерпретации результатов исследований скважин геолого-геофизических исследований, лабораторных изучений образцов породы (кернов, шлама) и проб пластовых флюидов при различных термобарических условиях (исследования РVТ, изучаемой физикой пласта), данных бурения скважин и специального моделирования процессов фильтрации ГДИС. Обработка и интерпретация результатов ГДИС связана с решением прямых и обратных задач подземной гидромеханики. Учитывая, что обратные задачи подземной гидромеханики не всегда имеют единственные решения, существенно отметить комплексный характер интерпретации данных ГДИС с широким использованием геолого-геофизических данных и результатов лабораторных исследований РVT.
1. Технико-технологический раздел
1.1 Цели и виды исследования скважин
Основная цель исследования залежей и скважин — получение информации о них для подсчета запасов нефти и газа, проектирования, анализа, регулирования разработки залежей и эксплуатации скважин. Исследование начинается сразу же после открытия залежей и продолжается в течение всей «жизни» месторождения, т. е. осуществляется в процессе бурения и эксплуатации скважин, обеспечивающих непосредственный доступ в залежь.
Исследования можно подразделить на первичные, текущие и специальные. Первичные исследования проводят на стадии разведки и опытной эксплуатации месторождения. Задача их заключается в получении исходных данных, необходимых для подсчета запасов и проектирования разработки. Текущие исследования осуществляют в процессе разработки. Их задача состоит в получении сведений для уточнения параметров пласта, принятия решений о регулировании процесса разработки, проектирования и оптимизации технологических режимов работы скважин и др. Специальные исследования вызваны специфическими условиями разработки залежи и эксплуатации скважин (внедрение внутрипластового горения и т. д.).
Выделяют прямые и косвенные методы исследования. К прямым относят непосредственные измерения давления, температуры, лабораторные методы определения параметров пласта и флюидов по керну и пробам жидкости, взятым из скважины. Большинство параметров залежей и скважин не поддается непосредственному измерению. Эти параметры определяют косвенно путем пересчета по соотношениям, связывающим их с другими, непосредственно измеренными побочными параметрами. Косвенные методы исследования по физическому явлению, которое лежит в их основе, подразделяют на:
- промыслово-геофизические,
- дебито- и расходометрические,
- термодинамические
- гидродинамические.
При промыслово-геофизических исследованиях с помощью приборов, спускаемых в скважину посредством глубинной лебедки на электрическом (каротажном) кабеле, изучаются: - электрические свойства пород (электрокаротаж), - радиоактивные (радиоактивный каротаж — гамма-каротаж, гамма-гамма-каротаж, нейтронные каротажи), - акустические (акустический каротаж), - механические (кавернометрия) и т. п. Промыслово-геофизические исследования позволяют определить пористость (поровую, трещинную, кавернозную), проницаемость, нефтеводогазонасыщенность, толщину пласта, отметки его кровли и подошвы, литологию и глинистость пород, положения водонефтяного контакта (ВНК), газонефтяного котакта (ГНК) и их продвижения, интервалы обводнения, состав жидкости в стволе скважины и его изменение (гамма-плотнометрия, диэлькометрическая влагометрия, резистивиметрия и др.), скорость движения и распределение закачиваемых в пласт агентов (метод радиоактивных изотопов, индикаторные методы и др.), выявить работающие интервалы пласта, установить профили притока и поглощения (скважинная дебито- и расходометрия, термометрия, фотоколориметрия, определение содержания ванадия и кобальта в нефти), определить техническое состояние скважины (качество цементирования, негерметичность обсадных труб, наличие межпластовых перетоков, толщина стенок труб, дефекты в них, местоположение интервалов перфорации, элементов оборудования, муфт и забоя скважины, место отложения парафина, осадка и др.). Эти исследования выполняют геофизические организации. К геофизическим исследованиям относят также скважинные дебиторасходометрические и термодинамические исследования.Скважинные дебито- и расходометрические исследования позволяют выделить в общей толщине пласта работающие интервалы и установить профили притока в добывающих и поглощения в нагнетательных скважинах. Обычно эти исследования дополняются одновременным измерением давления, температуры, влагосодержания потока (доли воды) и их распределения вдоль ствола скважины. Для исследования на электрическом кабеле в работающую нагнетательную скважину спускают скважинный прибор — расходомер (в добывающую скважину - дебитомер), датчик которого на поверхность подает электрический сигнал, соответствующий расходу жидкости.
Прибор перемещают в скважине периодически с определенным шагом (около 1 м) от точки к точке. В каждой точке измеряется суммарный расход. По данным измерения строят диаграмму интенсивности (расходо- или дебитограмму) или преимущественно профиль поглощения (притока) жидкости , что позволяет определить работающие интервалы, их долевое участие в общем расходе (дебите) жидкости, охват разработкой по толщине пласта (отношение работающей толщины пласта к нефтенасыщенной и перфорированной), эффективность проводимых в скважине работ по воздействию на призабойную зону пласта. При наличии измерения забойного давления можно определить коэффициент продуктивности (приемистости) каждого интервала или в случае исследований при нескольких режимах работы скважины — построить для них индикаторные линии.
Термодинамические исследования скважин позволяют изучать распределение температуры в длительно простаивающей (геотерма) и в работающей (термограмма) скважине, по которому можно определять геотермический градиент, выявлять работающие и обводненные интервалы пласта, осуществлять анализ температурных процессов в пласте (при тепловом воздействии, закачке холодной воды) и выработки запасов нефти при заводнении, контролировать техническое состояние скважин и работу подземного скважинного оборудования. Расходо- и термометрия скважин позволяют также определить места нарушения герметичности колонн, перетоки между пластами и др.
Гидродинамические методы исследования скважин и пластов по данным о величинах дебитов жидкостей и газа, о давлениях на забоях или об изменении этих показателей, а также о пластовой температуре во времени позволяют определять параметры пластов и скважин. Определение параметров пластов по данным указанных исследований относится к так называемым обратным задачам гидродинамики, при решении которых по измеряемым величинам на скважинах (дебиты, давления, температура) устанавливаются параметры пластов и скважин (проницаемость, пористость, пъезопроводность пласта, несовершенство скважин и др.).
... газа, учитывающие конструкцию НКТ, наличие жидкости в продукции скважины, изменение температуры газа по стволу скважины. 3. Двухчленный закон фильтрации. Коэффициенты фильтрационного сопротивления При обработке результатов исследований скважин на стационарных режимах фильтрации используется двухчленный закон сопротивления описывающий характер притока газа. Данный закон является общим и ...
... проводили с использованием жидкости глушения с большим содержанием солей. В период третьего квартала 2002 года произошло снижение дебита до 720 тыс. м3/сут. Было принято решение провести газогидродинамическое исследование скважины при стационарных режимах фильтрации, с целью определения причины снижения дебита/[6]. Результаты исследований газовой скважины №1048 приведены в приложений №1. В ходе ...
... в 22 скважинах, нижняя – в 44 скважинах. Остальные эксплуатируют верхнюю и нижнюю части одновременно. В настоящее время на Ямсовейском газоконденсатном месторождении находятся в эксплуатации четыре газоконденсатных скважины, пробуренные на ачимовские отложения. Были проведены исследования физико-химических свойств газового конденсата и дана его оценка как углеводородного сырья для производства ...
... к различным схемам фильтрационных потоков. Второй подход более эффективен, позволяет исходить из обобщенных характеристик течения. 1.2 Методы обработки данных гидродинамических исследований при плоскорадиальной фильтрации Так как газ в скважине движется по нелинейному закону и движение его плоскорадиальное, то мы можем рассмотреть способ определения основных характеристик потока газа с ...
0 комментариев