5. Находим полную потерю напора в трубопроводе по ф.2.7
=(0,022*15000*1,512/0,307*2*9,81)+5+(1,512/2*9,81)*5=128,0м
Определение необходимого диаметраПоскольку коэффициент гидравлического сопротивления зависит от числа Рейнольдса, а, следовательно, и от неизвестного D, задачи решают графоаналитичеким способом. Для этого вначале задаются несколькими произвольными значениями D и определяют все параметры, как при решении задач на определение пропускной способности. По известным параметрам строят график зависимости или и по заданному Н илиР находят искомый диаметр.
Как и при решении задач по расчету пропускной способности, можно воспользоваться рекомендованными значениями оптимальной скорости течения жидкости (табл.1). В этом случае по известной или рассчитанной вязкости жидкости выбирают оптимальную линейную скорость течения. По известной пропускной способности рассчитывают диаметр, и полученное значение проверяют путем расчета полной потери давления в трубопроводе при найденном значении диаметра. Если полная потеря давления выше заданной – задаются другой скоростью.
В зависимости от максимального рабочего давления газа промысловые газопроводы подразделяются на следующие категории:
· Газопроводы низкого давления – с давлением газа не более 0,005 МПа
· Газопроводы среднего давления – с давлением газа от 0,005 МПа и не более 0,3МПа
· Газопроводы высокого давления – с давлением газа от 0,3 МПа до 1,2 МПа
Гидравлический расчет газопроводов низкого давления производится при допущении, что скорость и удельный вес газа остаются по длине газопровода постоянными, течение - изотермическое
Полная потеря давления определяется по формуле
, (2.8)
где P – потеря давления на трение и местные сопротивления, Н/м2 (*9,81 Па)
hгн –гидростатический напор за счет разности удельных весов воздуха и газа, Н/м2 (*9,81 Па)
Причем, гидростатический напор учитывается при расчете газопроводов, прокладываемых в условиях резко выраженного рельефа местности. Гидростатический напор складывается с потерями давления на трение и местные сопротивления со знаком «плюс» или «минус» в зависимости от направления движения газа. Знак «минус» ставится при движении газа на подъем, знак «плюс» - на спуск.
Потеря давления на трение и местные сопротивления определяется по формуле
(2.9)
где – коэффициент гидравлического сопротивления
Q0 – расход газа нормальные м3/час (нм3/час)
D - внутренний диаметр газопровода, см
- плотность газа при температуре 0оС и атмосферном давлении, кг/нм3
- приведенная длина газопровода, м
= L+lэкв
где L действительная длина газопровода, м; lэкв – эквивалентная длина прямолинейного участка трубопровода (м), потери давления на котором равны потерям давления в местном сопротивлении со значением =1.
lэкв= (2.10)
Гидростатический напор определяется по формуле
=(-)H, (2.11)
где - удельный вес воздуха, кг/м3, - удельный вес газа, кг/м3; H – разность отметок начала и конца расчетного участка трубопровода
Схема расчета потерь напора в газопроводе низкого давления
1. Определяем среднюю скорость движения газа
W=3.5368, (2.12)
где Q0- расход газа, м3/час; D2 - диаметр трубопровода, см
2. Рассчитываем число Рейнольдса по ф. 2.2
3. Определяем коэффициент трения по ф. 2.3 – 2.5
4. Находим эквивалентную длину участка газопровода по ф.2.10
5. Определяем приведенную длину газопровода:
Lпр=L+lэкв* (2.13)
где - сумма коэффициентов местных сопротивлений
6. Определяем потерю давления на трение и местные сопротивления по ф.2.9
7. При необходимости определяем гидростатический напор по ф.2.11
8. Определяем полную потерю давления газа по ф.2.8.
Схема расчета пропускной способности газопровода низкого давления
1. Задавшись скоростью газа в соответствии с рекомендациями (табл. 2) определяем объемный расход газа в нм3/час по формуле:
Q0=2827.4*10-4D2W
2. С учетом найденного Q0 рассчитываем полную потерю давления или напора. Проверяем соответствие заданных потерь давления или напора расчетным
Схема расчета диаметра газопровода низкого давления
1. Задавшись скоростью газа в соответствии с рекомендациями (табл. 2) определяем диаметр трубопровода по формуле:
D=1.88
2. С учетом найденного D рассчитываем полную потерю давления или напора. Проверяем соответствие заданных потерь давления или напора расчетным
Таблица 2 – Рекомендуемые значения скорости движения газа в трубопроводах
Наименование транспортируемого газа | Скорость газа W, м/сек |
Пары углеводородов (остаточное абсолютное давление ниже 50мм рт ст. (0,0067 МПа) | 45 – 60 |
Пары углеводородов (остаточное абсолютное давление 50 – 100мм рт ст. (0,0067 – 0,013 МПа) | 30 – 45 |
Пары углеводородов (атмосферное давление) | 9 – 18 |
Газ (давление до 3 атм) | 5 – 20 |
Газ (давление 3 – 6 атм) | 10 – 30 |
Газ (давление свыше 6 атм) | 10 – 35 |
Гидравлический расчет газопроводов среднего и высокого давления во всей области турбулентного режима движения газа следует производить по формуле:
где Рн, Рк – соответственно начальное и конечное абсолютное давление газа на расчетном участке трубопровода, атм.
Lпр – приведенная (расчетная) длина газопровода, м
kэ – эквивалентная абсолютная шероховатость стенки трубы, см
– кинематическая вязкость газа при 0оС и атмосферном давлении, м2/сек
Q0 – расход газа, нм3/час
г – удельный вес газа при 0оС и атмосферном давлении, кг/м3
Величину эквивалентной абсолютной шероховатости внутренней поверхности стенок трубопровода принимают согласно табл. 3
Таблица 3
Наименование трубопровода | Эквивалентная шероховатость, мм (kэ) |
Внутренние газопроводы | 0,1 |
Магистральные газопроводы | 0,03 |
Воздухопроводы сжатого воздуха от компрессоров | 0,8 |
Нефтепродуктопроводы | 0,2 |
Нефтепроводы для средних условий эксплуатации | 0,2 |
Водопроводы | 0,5 |
Трубопроводы водяного конденсата | 0,5 |
Трубопроводы пароводяной смеси | 0,5 |
Паропроводы | 0,2 |
Потери давления на местные сопротивления рассчитывают согласно ф.2.13
lэкв=
Скорость газа, приведенная к условиям трубопровода, определяется по формуле:
W=3,54, Q0тр=
Схема расчета потерь напора в газопроводе среднего и высокого давления
1. Определяем приведенную длину газопровода по ф.
2. Находим эквивалентную абсолютную шероховатость трубы kэ по табл.3
3. Определяем конечное давление по формуле:
Рк=
Гидравлический расчет трубопроводов при движении нефтегазовых смесейПерепад давления, обусловленный гидравлическим сопротивлением при движении газожидкостного потока, определяют по формуле Дарси-Вейсбаха:
Число Рейнольдса:
При Re < 2300
При Re > 2300
Кинематическая вязкость определяется по формуле Монна:
где b - расходное объёмное газосодержание двухфазного потока (расходный параметр, определяется для трубных условий):
где Vг, Vж – объёмный расход газа и жидкости при средних давлении и температуре в трубопроводе.
Плотность смеси:
где
rж, rг – плотность жидкости и газа при средних давлении и температуре в трубе;
j - величина истинного газосодержания.
Истинное газосодержание является сложной функцией, зависящей от физических свойств жидкости и газа, диаметра и наклона трубопровода, расхода жидкости и газа. Закономерности изменения j - доли сечения потока, занятой газом, от указанных параметров устанавливаются только экспериментально – путём мгновенных отсечек потока или просвечиванием гамма-лучами.
.
Доля сечения потока, занятая жидкостью, составит: .
Средняя скорость смеси:
Определение структур потока и истинного газосодержания производится по критериям, разработанным во ВНИИГаз Мамаевым и Одишария.
Эмульсионная структура
Критерий Фруда:
При b < 0,988
При b ³ 0,988
определяется по специальным графикам.
Пробковая структура
При движении смеси на подъём:
При движении смеси по горизонтальным и нисходящим трубопроводам:
где a - угол между осью трубы и горизонталью.
Расслоенная структура.
Перепад давления, обусловленный гравитационными силами, определяется из уравнения:
где
hв hy – высоты восходящих и нисходящих участков, м;
rв, rн – истинная плотность смеси на этих участках, определённая с учётом истинного газасодержания j:
при восходящем потоке:
при нисходящем потоке:
Тогда:
Гидравлический расчет трубопроводов, транспортирующих многофазные жидкости
Для расчета трубопроводов, транспортирующих разрушенные неустойчивые эмульсии используют методику Гужова А.И. и Медведева В.Ф. порядок расчета по этой методике следующий.
1. Рассчитывают объемную долю дисперсной фазы в эмульсии:
,
2. Определяют тип дисперсной фазы исходя из того, что наиболее плотная упаковка капель пластовой воды в эмульсии достигается при и дальнейшая концентрация их приводит к инверсии фаз в эмульсии.
и
3. Определяют плотность эмульсии по одной из формул:
; ;
где , - плотность нефти и воды, кг/м3; - обводненность в долях единицы; Gн иGв объемные расходы нефти и воды
4. Рассчитывают динамическую вязкость эмульсии по формуле Бринкмана
при
при
5. Определяют среднюю скорость течения эмульсии в трубопроводе:
6. Находят кинематическую вязкость эмульсии:
7. Вычисляют число Рейнольдса:
;
8. Рассчитывают коэффициент гидравлического сопротивления
9. Определяют перепад давления на расчетной длине трубопровода
(- разность начальной и конечной геодезических отметок трубопровода, м; g – ускорение свободного падения, м/с2)
... 10,0 Содержание мех. Примесей, %, не более 0,05 0,05 0,05 ГОСТ 6370-83, 20,0 Давление насыщенных паров, Па, не более (ГОСТ 1756-52) 66650 66650 66650 СТ СЭВ 3654-82 Таблица 1.2. Физико-химические свойства нефтей (ТУ-1623-93) № п/п Наименование показателя Норма для типа Метод испытания, погрешность I II III IV 1. Плотность при 20 °С, кг/м3, не более 850 ...
... . Сигнал детектора фиксируется регистратором (в виде пиков) и обрабатывается вычислительным интегратором. В ГХ используют детекторы, которые преобразуют в электрический сигнал изменения физических или физико-химических свойств газового потока, выходящего из колонки, по сравнению с чистым газом - носителем. Существует множество детекторов, однако широкое применение находят только те из них, ...
... направляется на газоперерабатывающий завод. Данная напорная система сбора полностью герметизирована, что исключает потери газа и легких фракций нефти. Она позволяет производить подготовку нефти на центральном пункте нескольких месторождений, расположенных на расстоянии до 100 км. Однако длительный совместный транспорт нефти и воды может привести к созданию стойких эмульсий, и при высокой ...
... промышленных сточных вод. Цель регенерации – с одной стороны, десорбция адсорбированных молекул (при регенеративной очистке воды) или деструктивное их разрушение и, с другой стороны, восстановление адсорбционной способности активного угля. Для удаления органических веществ с поверхности активного угля используют вытеснительную десорбцию, смещение равновесного состояния системы с помощью изменения ...
0 комментариев