3. Квантовая теория

Первым физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его, был А. Эйнштейн. В 1905 г. он перенес гениальную идею квантованного поглощения и отдачи энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете. Если М. Планк (1900) квантовал лишь энергию материального осциллятора, то Эйнштейн ввел представление о дискретной, квантовой структуре самого светового излучения, рассматривая последнее как поток квантов света, или фотонов (фотонная теория света). Таким образом, Эйнштейну принадлежит теоретическое открытие фотона, экспериментально обнаруженного в 1922 А. Комптоном.

Представление о свете как о потоке быстро движущихся квантов было чрезвычайно смелым, почти дерзким, в правильность которого вначале поверили немногие. Прежде всего, с расширением квантовой гипотезы до квантовой теории света был не согласен сам М. Планк, относивший свою квантовую формулу только к рассматриваемым им законам теплового излучения черного тела.

А. Эйнштейн предположил, что речь идет о естественной закономерности всеобщего характера. Не оглядываясь на господствующие в оптике взгляды, он применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускулярную структуру света.

Квантовая теория света, или фотонная теория, А. Эйнштейна утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, поэтому свет имеет прерывистую структуру. Свет может рассматриваться как поток неделимых энергетических зерен, световых квантов, или фотонов. Их энергия определяется элементарным квантом действия Планка и соответствующим числом колебаний. Свет различной окраски состоит из световых квантов различной энергии.

Эйнштейновское представление о световых квантах помогло понять и наглядно представить явление фотоэлектрического эффекта, суть которого заключается в выбивании электронов из вещества под действием электромагнитных волн. Эксперименты показали, что наличие или отсутствие фотоэффекта определяется не интенсивностью падающей волны, а ее частотой. Если предположить, что каждый электрон выбивается одним фотоном, то становится ясно следующее: эффект возникает лишь в том случае, если энергия фотона, а следовательно, и его частота, достаточно велика для преодоления сил связи электрона с веществом.

Правильность такого толкования фотоэлектрического эффекта (за эту работу Эйнштейн в 1922 г. получил Нобелевскую премию по физике) через 10 лет получила подтверждение в экспериментах американского физика Р.Э. Милликена (1868—1953). Открытое в 1923 г. американским физиком А.Х. Комптоном (1892—1962) явление (эффект Комптона), которое отмечается при воздействии очень жесткими рентгеновскими лучами на атомы со свободными электронами, вновь и уже окончательно подтвердило квантовую теорию света. Эта теория относится к наиболее экспериментально подтвержденным физическим теориям. Но волновая природа света была уже твердо установлена опытами по интерференции и дифракции.

Возникла парадоксальная ситуация: обнаружилось, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его волновые свойства, а при фотоэффекте — корпускулярные. При этом фотон оказался корпускулой совершенно особого рода. Основная характеристика его дискретности — присущая ему порция энергии — вычислялась через чисто волновую характеристику — частоту.

Как и все великие естественнонаучные открытия, новое учение о свете имело фундаментальное теоретико-познавательное значение. Старое положение о непрерывности природных процессов, которое было основательно поколеблено М. Планком, Эйнштейн исключил из гораздо более обширной области физических явлений.

4. Релятивистская космология

 

Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности (ОТО).

Основное уравнение ОТО связывает геометрию пространства (точнее, метрический тензор) с плотностью и распределением материи в пространстве. Впервые в науке Вселенная предстала как физический объект. В теории фигурируют ее параметры: масса, плотность, размер, температура.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Модель А. Эйнштейна носит стационарный характер, поскольку метрика пространства рассматривается независимой от времени. Время существования Вселенной бесконечно, т.е. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшие исследования, и вскоре подход к проблеме решительно изменился.

В том же 1917 г. голландский астроном В. де Ситтер (1872—1934) предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже при наличии «пустой» Вселенной, свободной от материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга. Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

В 1922 г. российский математик и геофизик А.А. Фридман (1888— 1925) отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнений А. Эйнштейна, описывающее Вселенную с «расширяющимся» пространством.


Заключение

Альберт Эйнштейн — физик-теоретик и крупный общественный деятель. О нем часто говорят, как об ученом, «обвенчанном» с Вселенной, пытавшемся разгадать информацию «тайных послов» Вселенной. К «тайным послам» Вселенной относятся так называемые мировые константы, значения которых определяет физическое состояние мира, в котором мы живем. К этим константам относятся: постоянная Планка (квант-энергии), скорость света, заряд электрона, масса протона, гравитационная постоянная и некоторые другие. А. Эйнштейн признан выдающимся ученым XX столетия.

А. Эйнштейн принадлежал к числу выдающихся личностей, которые интересны не только своими результатами, но и тем, как они мыслили и над какими проблемами работали. Проблемы, которые он исследовал, интересовали многих ученых, например французского математика А. Пуанкаре (1854—1912) и австрийского физика Э. Маха (1833—1916). Научному сообществу А. Эйнштейн стал известен своими первыми опубликованными тремя, работами. В первой речь шла о развитии статистических методов, при изучении движения броуновских частиц, во второй — о необходимости введения понятия системы отсчета для уточнения содержания понятий времени и пространства, в третьей — об анализе гипотезы М. Планка о квантах энергии, т. е. испускании и поглощении энергии порциями, квантами. Анализируя эту гипотезу, А. Эйнштейн пришел к выводу о необходимости радикального изменения существовавших в то время представлений об энергии «формах ее превращения. Следствием этого анализа явилось утверждение А. Эйнштейна о том, что свет испускается и поглощается как некая локализованная частица, которая перемещается от одной точки к другой как единое целое. Сходную идею высказывал еще И. Ньютон в своей корпускулярной теории света. Многие ученые придерживались концепции света как колебание эфира, заполняющего все космическое пространство. Всемирную известность Эйнштейну принесла его теория относительности. Однажды великий Чарльз Чаплин сказал Эйнштейну: «Мне аплодируют, потому что все понимают, что я играю. Вам — за то, что Вас не понимают».


Список использованной литературы.

1. Концепции современного естествознания: учебник для студентов вузов/под ред. В.Н. Лавриненко, В.П. Ратникова. – 4-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2008. – 319 с.

2. Лихин А.Ф. Концепции современного естествознания: учеб. – М.: ТК Велби, Издательство Проспект, 2006. – 264 с.

3. Храмов Ю.А. Физики: Библиографический справочник. – 2-е изд., испр. и дополн. – М.: Наука, Главная редакция физико-математической литературы, 1983.


Информация о работе «Основные научные и мировоззренческие идеи А. Эйнштейна»
Раздел: Физика
Количество знаков с пробелами: 23312
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
52359
0
0

... как элементарного объекта теории, представляющего в теоретических моделях физическую реальность. Физическая картина мира Галилея – Ньютона, в которой мир отображён как множество материальных точек, движущихся в пространстве с течением времени, замещается в специальной теории относительности Эйнштейна картиной мира, представленной множеством точечных пространственно – временных материальных ...

Скачать
51595
0
0

... новой картины мира, замещающего образ материальной точки. Во всех последующих работах Эйнштейн будет пользоваться идеализацией точечногопространственного – временного физического события как элементарного объекта теории, представляющего в теоретических моделях физическую реальность. Физическая картина мира Галилея – Ньютона, в которой мир отображён как множествоматериальных точек, движущихся в ...

Скачать
32400
0
0

... физики, химии, биологии, геологии и др., то они только начинали делать первые самостоятельные шаги. Рассматриваемый период исследователи связывают и со становлением самой научной рациональности. Рациональность в науке есть продукт реализации разумом своего организующего, нормирующего и упорядочивающего начала человеческой деятельности. Разум стремится схематизировать, в частности в науке, ...

Скачать
19467
0
0

... во времени гипотез и теорий, каковыми ныне являются начала термодинамики, законы сохранения, постоянство фундаментальных физических величин. Замена ядра научной картины мира связано с революцией в науке, в силу чего научная картина мира – устойчива, а теории, подрывающие ее, встречают ожесточенное сопротивление, как со стороны научного сообщества, так и со стороны околонаучных и далеких от науки ...

0 комментариев


Наверх