1. Выбор структурной схемы разрабатываемого устройства

Выполнение предъявляемых к современному передатчику технических требований оказывается сложной задачей. Для удовлетворения всех требований приходится использовать прием разделения функций между отдельными составными частями устройства так, чтобы каждая часть выполняла в полной мере свою задачу, в соответствии с установленными требованиями, и не мешала бы другим частям устройства столь же точно выполнять их функции. Структурная схема дает возможность увидеть устройство и принципы работы прибора уже на самом раннем этапе проектирования, она позволяет разработчику выбрать оптимальную структуру передатчика, определить количество составных частей и технические требования к ним. Проще говоря, структурная схема дает возможность увидеть устройство и принципы работы прибора уже на самом раннем этапе проектирования. Структурная схема разрабатываемого передатчика приведена на рисунке 1.

По данной структурной схеме можно достаточно подробно описать разрабатываемое устройство, определить необходимое усиление определённых каскадов.

Сигнал от абонента поступает на вход аналого-цифрового преобразователя (АЦП), далее цифровой сигнал поступает на один из входов формирователя три-битной последовательности в модуляторе (М) в который подаётся сигнал с генератора промежуточной частоты (ПЧ). После чего через элементы задержки, в зависимости от цифровой последовательности, коммутатор, также находящийся в модуляторе, подключает на выход сигнал с генератора ПЧ. Модулированный на промежуточной частоте сигнал пропускается через полосовой фильтр (ПФ1), усиливается в предварительном усилителе (ПУ) и переносится на СВЧ при помощи смесителя СВЧ. На смеситель СВЧ через вентиль подаётся СВЧ сигнал, вентиль нужен для того, чтобы в случае рассогласования отразившийся сигнал не вывел из строя генератор. Перенесённый на СВЧ сигнал снова усиливается основным усилителем (У), фильтруется полосовым фильтром (ПФ) и подводится к антенне, для излучения его в эфир. Вентиль, стоящий перед полосовым фильтром, нужен для того, чтобы в случае рассогласования с антенной или фильтром, отражённый сигнал не повредил цепи усилителя и смесителя СВЧ.

2. Расчёт структурной схемы разрабатываемого устройства

В результате расчета структурной схемы определяется число каскадов, уточняется их вид, взаимосвязь и общие характеристики.

Расчет начинается с последнего каскада структурной схемы, так как в соответствии с заданием проектируемый передатчик должен обеспечить на выходе требуемые характеристики.

Сопротивление нагрузки: 50 Ом.

Минимальная мощность (Pn), отдаваемая транзистором оконечного каскада (ОК) в нагрузку: 28 Вт.

Несущая частота: 1.7 ГГц.

Колебательная мощность, отдаваемая транзистором ОК:

Pk=1.2*Pn(1)

По формуле (1) получаем: Рk= 33.6 Вт.

В усилительных каскадах передатчиков, чтобы исключить возможность самовозбуждения, обычно, используют транзисторы, не имеющие большой запас по граничной частоте и рассеиваемой мощности. При выборе транзистора, чаще всего, задаются следующими условиями:

0.3fT<f0 <fT (2)


где  – рабочая частота, – граничная частота передачи тока по схеме с общим эмиттером

Как видно из формулы (2), для достижения требуемых параметров усилителя нам подойдёт транзистор КТ948А (параметры транзистора приведены в приложении А).

Коэффициент усиления по мощности каскада определяется по формуле:

 , (3)

где Kpt = 10, ft = 1950, Pt = 40 и Ekt = 45 – экспериментальные параметры транзистора (приложение 1), f=1700 МГц – частота усиливаемого сигнала, P1=28 Вт – мощность усилителя, Ek – напряжение питания.

По формуле (3) получаем коэффициент усиления по мощности ОК: Kp=12.8.

Мощность, поступающая с выхода предоконечного каскада(ПОК) на вход ОК определяется по формуле:

 (4)

Из формулы (4) получаем Pvh=2.625 Вт, то есть на выходе ПОК, с учётом потерь в согласующей цепи, мы должны обеспечить мощность 3.1Вт.

Выберем транзистор для предоконечного каскада типа 2Т937Б-2. Его характеристики приведены в приложении А. Коэффициент усиления пред-оконечного каскада рассчитывается также, как и для ОК и равен Kpпок=40.

Для увеличения стабильности ПОК можно ввести в его цепи дополнительные затухания и тем самым уменьшить коэффициент усиления доKpпок=20. Мощность, поступающая на вход ПОК со смесителя рассчитывается по формуле (4) и составляет Pvhпок=0.156 Вт.

Таким образом для обеспечения выходной мощности передатчика необходимо использовать два каскада основного усиления реализованных на транзисторах КТ948А и 2Т937Б-2. Характеристики выбранных транзисторов приведены в приложении А. Далее необходимо обеспечить необходимую мощность на выходе смесителяPvihсм=0.156 Вт. Приняв во внимание, что коэффициент полезного действия смесителя составляет ηсм = 30…50%, мощность на входе смесителяPvhсм = 0.156/0.3= 0.52 Вт.

Далее необходимо определить полосу частот занимаемую информационным сигналом:

(5)

Согласно техническому заданию число каналов 360, к каждым пятнадцати каналам добавляется один служебный, поэтому число каналов возрастёт до 384. Так как в качестве типа модуляции выбрана 8ОФМ, то для такого количества каналов можно выбрать скорость передачи B = 2.048Мбит/с, а m = 3. Подставляя данные в формулу (5) получим полосу частот больше чем 1.5МГц. Для обеспечения допустимого уровня искажений примем полосу 7МГц.

Выходное сопротивление нашего каскада необходимо согласовать с фидером ведущим к антенне сопротивлением 50 Ом. Согласование проведем с помощью микрополосковых линий. Определим волновое сопротивлении линии и ее электрическую длину по формулам:

 (6)

 (7)


Получаем

=118 Ом, =1.57

С помощью программы TXLINE 2003 определим параметры микрополосковой линии . Экран программы приведен на рисунке 2

С помощью программы определили:

Материал диэлектрика – воздух

Материал напыления - медь

Длина микрополосковой линии (L) - 43.9 мм

Ширина микрополосковой линии(W) – 0.29 мм

Толщина микрополосковой линии – 0.254 мм

Толщина напыления меди – 0.001 мм


Информация о работе «Радиопередатчик радиорелейной линии с цифровой модуляцией»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 19695
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
29964
10
15

... F, которое учитывает потери в застройке . Расчитываем длину волны, распространяющейся в радиоканале Расчитываем высоту подъёма антенны радиопередатчика 5. ПРОЕКТИРОВАНИЕ УСТРОЙСТВ СУММИРОВАНИЯ И РАЗДЕЛЕНИЯ СИГНАЛОВ НА ВХОДЕ АНТЕННО-ФИДЕРНОГО ТРАКТА РАДИОРЕЛЕЙНЫХ И СПУТНИКОВЫХ УСТРОЙСТВ При передаче сигнал с частотой f’4 от передатчика ПД4 (рис. 5.1) через полосовой фильтр ...

Скачать
88022
12
18

... сигналов, поступающих от разных источников информации (телефонные сигналы от междугородней телефонной станции, телевизионные сигналы от междугородней телевизионной аппаратной и т.д.) в сигналы, передаваемые по радиорелейной линии, а также обратное преобразование сигналов, приходящих по РРЛ, в сигналы телерадиовещания или телефонии. Радиосигналы ОРС с помощью передающего устройства и антенны ...

Скачать
25174
3
0

... , реконструкция и техническое перевооружение действующих РРЛ на базе использования новейших достижений науки и техники.   1.1 Обзор аппаратуры Назначение: КУРС – комплекс унифицированных радиорелейных систем связи – предназначен для построения экономичных, высококачественных и надежных радиорелейных линий, отвечающих всем требованиям построения сети связи с учетом её развития. В рамках этого ...

Скачать
58493
13
0

... давление, гПа  613 Радиорелейная  станция Р-419А Рисунок 1.1.3 – Внешний вид станции Р-419А PPC P-419 А предназначена для создания временных быстроразвертываемых малоканальных радиорелейных линий связи, PPC смонтирована на автошасси ЗИЛ-131 в кузове K2-13L Станция имеет три варианта исполнения, отличающихся используемой транспортной базой: Р-419 А - используется ...

0 комментариев


Наверх