4.4 Расчет показателей надежности устройства сопряжения
Проблема обеспечения надежности связана со всеми этапами создания изделия и всем периодом его практического использования. Надежность изделия в основном закладывается в процессе его конструирования и обеспечивается в процессе его изготовления путем правильного выбора технологии производства, контроля качества исходных материалов, полуфабрикатов и готовой продукции, контроля режимов и условий изготовления. Надежность обеспечивается применением правильных способов хранения изделия и поддерживается правильной эксплуатацией, планомерным уходом, профилактическим контролем и ремонтом. В зависимости от назначения объекта и условий его эксплуатации, надежность может включать безотказность, долговечность, ремонтопригодность и сохраняемость. Применительно к разрабатываемому устройству наиболее часто употребляются следующие показатели надежности:
- вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникнет;
- средняя наработка на отказ - отношение суммарной наработки объекта к математическому ожиданию числа отказов в течение этой наработки
- заданная наработка (заданное время безотказной работы) - наработка, в течение которой объект должен безотказно работать для выполнения своих функций;
- интенсивность отказов - вероятность отказов неремонтируемого изделия в единицу времени после заданного момента времени при условии, что до этого отказ не возникал. Другими словами - это число отказов в единицу времени отнесенное к среднему числу элементов, исправно работающих в данный момент времени.
Оперируя этими понятиями можно судить о надежностных характеристиках изделия. Итак, произведем расчет надежности, приняв следующие допущения:
- отказы случайны и независимы;
- учитываются только внезапные отказы;
- имеет место экспоненциальный закон надежности.
Последнее допущение основано на том, что для аппаратуры, в которой имеют место только случайные отказы, действует экспоненциальный закон распределения - закон Пуассона - и вероятность работы в течение времени равна:
. (4.2)
Учитывая то что с точки зрения надежности все основные функциональные узлы и элементы в изделии соединены последовательно и значения их надежностей не зависят друг от друга, т.е. выход из строя одного элемента не меняет надежности другого и приводит к внезапному отказу изделия, то надежность изделия в целом определяется как произведение значений надежности для отдельных элементов:
. (4.3)
С учетом формулы (4.2) получим:
, (4.4)
где - интенсивность отказов - го элемента с учетом режима и условий работы, .
Учет влияния режима работы и условий эксплуатации изделия при расчетах производится с помощью поправочного коэффициента - коэффициента эксплуатации и тогда в формуле (4.4) выразится как:
, (4.5)
где - интенсивность отказов - го элемента при лабораторных условиях работы и коэффициенте электрической нагрузки .
Для точной оценки нужно учитывать несколько внешних и внутренних факторов: температуру корпусов элементов; относительную влажность; уровень вибрации, передаваемый на элементы и т.д. С этой целью может быть использовано следующее выражение:
, (4.6)
где - поправочный коэффициент, учитывающий - ый фактор;
- поправочный коэффициент, учитывающий влияние температуры;
- поправочный коэффициент, учитывающий влияние электрической нагрузки;
- поправочный коэффициент, учитывающий влияние влажности;
- поправочный коэффициент, учитывающий влияние механических воздействий.
Все определяются из справочных зависимостей и таблиц, где они приведены в виде и , как объединенные с и с .
После этого можно определить значение суммарной интенсивности отказов элементов изделия по формуле:
, (4.7)
где - число элементов в группе, ;
- интенсивность отказа элементов в -ой группе, ;
- коэффициент эксплуатации элементов в -ой группе;
- общее число групп.
Исходные данные по группам элементов, необходимые для расчета показателей надежности приведены в таблице 4.2.
Таблица 4.2 - Справочные и расчетные данные об элементах конструкции
гр. | Наименование Группы | 1/ч | 1/ч | ч | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | Конденсаторы | 7 | 0.15 | 0.35 | 1.07 | 0.38 | 0.97 | 1.1 | 8.6 |
2 | Аналоговые Микросхемы | 10 | 0.02 | 0.7 | 1.07 | 0.75 | 0.05 | 0.5 | 0.4 |
3 | Цифровые микросхемы | 2 | 0.02 | 0.7 | 1.07 | 0.75 | 0.50 | 0.5 | 14 |
4 | Транзисторы | 3 | 0.09 | 1 | 2 | 2 | 1.8 | 0.5 | 16 |
5 | Диоды КД521А | 2 | 0.04 | 1 | 2 | 2 | 0.8 | 0.5 | 7 |
6 | Резисторы С2-23 СП3-19 | 14 7 | 0.01 0.05 | 0.4 0.4 | 2 2 | 0.8 0.8 | 0.08 0.4 | 1.1 1.1 | 0.7 3.5 |
7 | Разъем Многоштырьковый (25,45 штырей) | 2 | 3.2 | 0.7 | 1.07 | 0.75 | 4.8 | 1.2 | 42 |
8 | Соединения пайкой | 390 | 0.01 | 0.8 | 1.07 | 0.86 | 7.1 | 1.2 | 62.8 |
9 | Плата печатная | 1 | 0.2 | 0.6 | 1.07 | 0.64 | 0.13 | 3.2 | 28.3 |
Воспользовавшись данными табл. 4.2 по формуле (4.7) можно определить суммарную интенсивность отказов , 1/час.
Далее найдем среднюю наработку на отказ , применив следующую формулу:
. (4.8)
Итак, имеем:
часов.
Вероятность безотказной работы определяется исходя из формулы (4.4), приведенной к следующему виду:
, (4.9)
где часов - заданное по ТЗ время безотказной работы.
Итак, имеем:
Среднее время восстановления определяется последующей формуле:
, (4.10)
где - вероятность отказа элемента i-ой группы;
- случайное время восстановления элемента i-ой группы, приближенные значения которого указаны в таблице 4.2.
Подставив значения в формулу (4.6), получим среднее время восстановления =2.491ч.
Далее можно определить вероятность восстановления по формуле:
, (4.11)
где =6.4ч.
Следовательно, по формуле (4.11) определим , что больше .
Таким образом, полученные данные удовлетворяют требованиям ТЗ по надежности, так как при заданном времени непрерывной работы ч проектируемый блок будет работать с вероятностью . При этом он будет иметь среднюю наработку на отказ ч и вероятность восстановления, следовательно, дополнительных мер по повышению надежности разрабатываемого устройства не требуется.
... лекарств. Можем сделать вывод, что физиология трудовой деятельности — раздел физиологии, посвященный изучению изменений функционального состояния организма человека под влиянием его трудовой деятельности и обосновывающий методы и средства организации трудового процесса, направленные на поддержание высокой работоспособности и сохранение здоровья. В задачи физиологии труда входит изучение ...
... форме, что в итоге приведет к сокращению административных расходов; Ø содействовать реализации торговой политики с учетом социально-экономических и инвестиционных задач. 1.2 Технические средства таможенного контроля как часть таможенной инфраструктуры Все элементы инфраструктурного обеспечения деятельности таможенной службы можно разделить на три большие группы [46]: 1) ...
... К. Сатпаева» для просмотра и ввода информации системы оперативно-диспетчерского контроля и управления, создаваемые на Visual Basic. Специфика используемого в системе оперативно-диспетчерского контроля и управления РГП «Канал им. К. Сатпаева» ПО такая, что разработка ПО, как таковая, может производиться только при создании самой системы. Применяемое ПО является полуфабрикатом. Основная задача ...
... биологических и химических средств защиты леса от хвое- и листогрызущих насекомых». Наставление разработано на основе обобщения результатов исследований по совершенствованию технологий изменения средств защиты леса от вредителей на базе современной авиационной техники. Данный документ рассматривает такие важные для лесозащитной практики вопросы, как определение целесообразности авиационной борьбы ...
0 комментариев