3.2.2 Определение основных параметров ветроэнергетики
Удельная мощность ветрового потока Nудi(Vi), проходящего через 1 м2 поперечного сечения определяется по формуле/8/:
(3.3.)
где: - заданная плотность воздуха при нормальных условиях
V - скорость ветра, м/с;
Таким образом мощность ветра пропорциональна его скорости в третьей степени, и для оценки этой мощности достаточно иметь информацию о скорости ветра.
В России имеются метеорологические службы, занимающиеся регистрацией скорости ветра , следовательно имеются достаточно достоверные статистические данные о его скорости. Однако при этом следует помнить, что на метеостанциях скорость ветра измеряется на высоте 10 м над поверхностью Земли в данной местности. Поэтому если ветроколесо находится на другой высоте, то скорость ветра следует пересчитать по следующей эмпирической формуле /16/:
, (3.4.)
где: Vh - скорость ветра на высоте h, м/с;
V - скорость ветра по данным метеостанции, м/с;
h - высота оси ветроколеса, м;
b - эмпирический коэффициент.
Для открытых мест параметр b=0,14 /16/. На основании статистических метеорологических данных определены параметры энергии ветра в течение года (табл.3.3.1.).
Таблица 3.4 Вероятность скорости ветра по градациям (в % от общего числа случаев)/9/
Ме- сяц | Скорость (м/сек) | ||||||||||||||||
0-1 | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-17 | 18-20 | 21-24 | 25-28 | ||||||
ст. Усть-Баргузин | |||||||||||||||||
I | 31.5 | 33.2 | 18,2 | 8,7 | 3.0 | 0,9 | 2,0 | 1,0 | 1,3 | 0,2 | |||||||
II | 44,6 | 32.0 | 12,7 | 5,3 | 2,4 | 0,8 | 1,0 | 0,3 | 0,8 | 0,1 | |||||||
III | 38,3 | 34.1 | 13,3 | 6,1 | 3,7 | 1.3 | 1,6 | 0.7 | 0,8 | 0.1 | |||||||
IV | 35,8 | 30.2 | 15,2 | 7,9 | 4,7 | 1,4 | 2.2 | 0,6 | 1,7 | 0,3 | |||||||
V | 33,8 | 30.7 | 18,4 | 7,8 | 3,8 | 1,6 | 1,7 | 0,8 | 1,2 | 02 | |||||||
VI | 35,7 | 33,1 | 19,0 | 6,3 | 2,6 | 1,1 | 1,1 | 0,3 | 0,7 | 0,1 | |||||||
VII | 36,9 | 32,4 | 18,8 | 6,5 | 2,1 | 0,8 | 1,0 | 0,4 | 0,9 | 0,2 | |||||||
VIII | 33,1 | 31.5 | 19,0 | 7,1 | 3,2 | 1,5 | 2,1 | 0,6 | 1,8 | 0,1 | |||||||
IX | 33,4 | 30.3 | 17,6 | 7,3 | 4,5 | 1,7 | 2,6 | 0,7 | 1,6 | 0,3 | |||||||
X | 28,5 | 28,0 | 16,7 | 9,6 | 6,1 | 1,6 | 3,1 | 1,6 | 4.2 | 0.6 | |||||||
XI | 16,4 | 21,4 | 22,3 | 15,6 | 7,4 | 3,6 | 4,0 | 2,5 | 5,2 | 0.6 | |||||||
XII | 15,6 | 21,2 | 20,9 | 17,2 | 9,1 | 3,1 | 5,0 | 2.3 | 4,5 | 1.1 | |||||||
Год | 31.9 | 29,8 | 17,7 | 8,8 | 4,4 | 1,6 | 2.3 | 1,0 | 2,1 | 0.4 | |||||||
Из таблицы 3.4. видно, что наиболее вероятные скорости ветра равны 4 - 12 м/с. Удельная энергия, при этом, определялась с учетом вероятностного характера скорости ветра по формуле :
(3.5.)
где: Nуд - удельная мощность ветра ,Вт/м2 ;
Vi - i-тая скорость ветра, м/с;
ti(Vi) - вероятность действия i-той скорости ветра во время t.
Для проектирования электроснабжения важным параметром является продолжительность штиля (V£1м/с). Из таблицы 3.4. определяем, что вероятность практического штиля в нашей зоне составляет 0,14 -0,30 в зависимости от времени года, однако максимальное количество идущих подряд штилевых дней для Республики Бурятия равно четырем /8/.Это обстоятельство следует учитывать при проектировании ветроэлектрических установок и определения глубины аккумулирования электроэнергии.
Как видно из данной главы Байкальский регион имеет колоссальный ресурс возобновляемых источников энергии, причем как солнца, так ветра, что позволяет с достаточной эффективностью внедрять установки на основе ВИЭ.
0 комментариев