1.4 Нанесення з парової фази
Нанесення нанодротів з парової фази включає фізичне нанесення з пари (ФНП - PVD), хімічне осадження з парової фази (CVD) і метал-органічне осадження з парової фази (MOCVD). Як і електрохімічне нанесення, нанесенням з парової фази зазвичай можливо виготовляти нанодроти меншого діаметру (<20нм), ніж методами інжекції під тиском, оскільки вони не залежать від високого тиску і поверхневого натягу, потрібних для впровадження матеріалу в пори.
У методі фізичного парового нанесення матеріал спочатку нагрівається до утворення пара, яка потім вводиться у пори шаблону й охолоджується до утворення твердого стану. З використанням спеціально сконструйованого обладнання майже монокристалічні нанодроти Ві були синтезовані в анодних алюмінієвих шаблонах з діаметрами пор ~7нм. Встановлено, що ці нанодроти Ві мають переважну орієнтацію росту кристалу вздовж осі дроту, аналогічно до нанодротів вісмуту, виготовлених інжекцією тиском. Змішані матеріали, які утворюються з двох реагуючих газів, були також виготовлені з використанням методу хімічного осадження з парової фази (CVD). Наприклад, монокристалічні нанодроти GaN були синтезовані в анодних алюмінієвих шаблонах шляхом газової реакції пари Ga2O з потоком аміаку. Інший підхід рідина/газ був використаний при виготовленні полікристалічних нанодротів GaAs та InAs в наноканальному склі. Тут наноканали заповнюються одним рідинним прекурсором (наприклад, Me3Ga або Et3In) через капілярний ефект, і нанодроти формуються у шаблоні через реакції між рідким прекурсором та іншим газовим реагентом (наприклад, AsH3) [9].
1.5 Синтез нанодротів з використанням шаблонів і в якості шаблонів
Нещодавно вуглецеві нанотрубки як важливий клас 1 — D наноструктур були виготовлені в порах анодних алюмінієвих шаблонів методом хімічного осадження з парової фази для формування високовпорядкованих структур двовимірних вуглецевих нанотрубок. Спочатку електрохімічне наносилася на дно пор невелика кількість металевого каталізатору (наприклад, Co). Потім шаблони поміщали у піч і нагрівали до ~ 700 — 800°С з потоком газу, що складався із суміші N2 та ацетилену {С2Н2) або етилену (С2Н4), Молекули гідрокарбону піролізуються, утворюючи нанотрубки в порах шаблону за допомогою металевих каталізаторів. Добре впорядковані структури нанотрубок викликали великий інтерес завдяки перспективі їх застосування, наприклад, в якості плоских панельних дисплеїв з холодним катодом. Цікавим також є використання цеолітових шаблонів з дуже вузькими порами (< 1 нм у діаметрі), що дозволяє вирощувати вуглецеві нанотрубки діаметрами 0.42 нм, оточені тільки 10 атомамим вуглецю.
Порожні серцевини вуглецевих нанотрубок також застосовувалися дня синтезу різноманітних нанодротів дуже матого діаметру. Такі нанодроти інтенсивно вивчалися методом високороздільної ПЕМ (електронною мікроскопією на пропускання), але їх фізичні властивості ще слабо вивчені [7].
1.6 Методика вирощування кремнієвий нанодротів
Безперервний прогрес в характеристиках різних електронних пристроїв – від персональних комп'ютерів до мобільних телефонів – в значній мірі обумовлений постійним зменшенням розмірів кремнієвих мікросхем. Для їх серійного виробництва добре відладжена 0.1-мікронна технологія. Але подальша мініатюризація електронних компонентів до масштабу 10нм вимагає заміни кристалів кремнію іншими фізичними об'єктами. Як такі зараз обговорюються, наприклад, вуглецеві нанотрубки, молекулярні перемикачі і кремнієві нанодроти. Про останніх і піде мова нижче.
Методика вирощування кремнієвих нанодротів полягає в наступному. На підкладку з кремнію наносять маленьку краплю рідкого металу (як правило, золото). Ця крапля так ефективно адсорбує Si з пари SiH4 або Si2H6, що стає пересиченою кремнієм, внаслідок чого з краплі росте довгий і круглий монокристалічний нанодріт Si, діаметр якого визначається розмірами краплі Au (див. рис. 1.5). До цих пір вважали, що якщо на підкладку нанести відразу декілька крапель Au, то одночасно вийде відповідна кількість нанопроводів Si.
Рис.1.5. Ілюстрація росту нанодроту Si з використанням капель Au в якості каталізатора.
Тому дана методика розглядалася як вельми перспективна для широкомасштабного виготовлення таких нанодротів з метою їх практичного використання в наноелектроніці. Проте проведені в IBM дослідження показали, що це не так [5].
За даними ІВМ процес зростання паралельних один одному нанопроводів Si на підкладці з Si (111) вивчений з використанням скануючого тунельного мікроскопа. Всупереч очікуванням, авторам не вдалося виростити відразу багато довгих однорідних по діаметру нанопроводів. Причина цього полягає в тому, що неминучі, нехай навіть і зовсім незначні відмінності в розмірах крапель Au приводять зрештою до того, що атоми Au дифундують з менших крапель на великі, внаслідок чого зростання нанопроводів, що залишилися без "золотого даху", припиняється (див. рис. 1.5). Цей ефект, званий ефектом Оствальда (лауреат Нобелівської премії по хімії в 1909 році) або, – жартома – "капіталістичним принципом", пояснюється зменшенням повної поверхневої енергії при дифузії Au з краплі на краплю. Науковці спостерігали і інші шкідливі наслідки дифузії Au, зокрема зміну діаметру кожного нанодроту уздовж його довжини [4].
Вихід з цієї ситуації запропонований пізніше вчним У. Джозеле: не потрібно гнатися за ідеальними умовами синтезу (надвисокий вакуум і так далі), як це робили вчені з ІВМ, а просто допустити присутність в атмосфері незначної кількості кисню. Це дозволить блокувати шляхи дифузії Au по поверхні підкладки. Тоді краплі Au виявляться незалежними один від одного, і вийде великий масив довгих однорідних нанопроводів Si. Таким чином, виявляється, що "дуже чисто" – це іноді навіть "занадто чисто".
... 350 - 2000 ppm AS-MLC /AppliedSensor Inc. CO 0.5 - 500 ppm AS-MLK /AppliedSensor Inc. CH4 Від 0.01 до 4% 2. Сучасні датчики газів, та методи їх отримання 2.1 Нові матеріали та наноструктури – перспективна база елементів для датчиків газів В зв’язку з інтенсивним розвитком виробництва поверхневих датчиків газів, досліджуються придатні для їх побудови сучасні напівпрові ...
... та наноматеріали" на 2010-2014 роки фігурують у тому числі наступні: · утворення центру сертифікації наноматеріалів, наноструктур та приладів, у тому числі для забезпечення екологічної безпеки; · вивчення питання щодо впливу наноматеріалів на біологічні системи різного рівня організації; · розроблення нанобіотехнологій для захисту навколишнього природного середовища; · розроблення порядку ...
0 комментариев