СУЖДЕНИЕ


ПЛАН

1.  Сущность суждения

2.  Логические связи между суждениями. Истинностное значение сложных суждений

3.  Условный (гипотетический) силлогизм

4.  Разделительный силлогизм

5.  Дилеммы

Литература


1. СУЩНОСТЬ СУЖДЕНИЯ

 

Процесс рассуждения разлагается на отдельные мысли, следующие друг за другом в определенном порядке. Законченная мысль, в которой что- либо утверждается или отрицается, называется суждением.

Суждения, содержание которых отвечают действительности, называются истинными, а суждения, содержание которых не отвечает действительности, - ложными. Истинными, например, будут суждения «Лилия-растение», «Медь электропроводна». Напротив, суждения «Кит-рыба», «Ртуть легче воды» являются ложными.

В логике суждения обозначаются буквами. Мы будем считать, что малые латинские буквы p, q, r, s, t…c индексами или без них обозначают суждения. Поскольку суждения могут быть истинными или ложными, то, поставив значению «истина» в соответствие 1, и значению «ложь» - 0, будем полагать, что эти переменные принимают значения из двухэлементного множества {0,1}. Поскольку суждения выражаются в предложениях, то переменные, обозначающие суждения, обозначают и предложения. Их называют, поэтому пропозициональными переменными. В символических обозначениях суждения, обычно, называют высказываниями.

2. ЛОГИЧЕСКИЕ СВЯЗИ МЕЖДУ СУЖДЕНИЯМИ. ИСТИНОСТНОЕ ЗНАЧЕНИЕ СЛОЖНЫХ СУЖДЕНИЙ

 

В рассуждениях отдельные суждения связываются в сложные суждения с помощью логических связок. Наиболее употребительными из них являются:

«и», которая обозначается символом Ù

«или», которая обозначается символом Ú

«или» в исключительном смысле, которая обозначается символом Ú

«если…, то», которая обозначается символом ®

«если и только если», которая обозначается символом º

«не», которая обозначается символом ¾

В грамматике связки Ù, Ú, Ú, ®, º, называются союзами. Часто связка Ù, связывающая отдельные предложения, отпускается и заменяется точкой. Связка - именуется в грамматике отрицанием.

Суждение, не содержащее указанных связок, называется простым или атомарным. Истиностное значение сложных суждений, образованных из атомарных однократным применением логических связок задается следующей таблицей истинности.

р q

`

`

pÚq pÚÚq рÙq p®q pºq
0 0 1 1 0 0 0 1 1
0 1 1 0 1 1 0 1 0
1 0 0 1 1 1 0 0 0
1 1 0 0 1 0 1 1 1

Суждения `p и `q называются отрицанием суждений p и q.

Суждения p Ú q - дизъюнкцией суждений p и q.

Суждение p Ú Úq – строго разделительной дизъюнкцией суждений p и q.

Суждение p Ù q - конъюнкцией суждений p и q.

Суждение p ® q – импликацией суждений p и q.

Суждений p º q – эквиваленцией суждений p и q.

В рассуждениях логические связи применяются многократно в разных сочетаниях. Конечно, при выявлении истинности всего рассуждения очень важны конкретные знания. Но логика тем и хороша, что нередко дает очень простой способ установления истинности какого-то рассуждения, не требующий конкретных знаний. Суть его в следующем. В рассуждении, выраженном в естественном языке, выделяются входящие в него простые суждения. Если какие-то суждения лишь подразумеваются, то они формулируются явно. Каждое простое суждение обозначается переменной, причем одни и те же суждения обозначаются одной и той же переменной, а разные – разными переменными. Затем, пользуясь определениями логических связей, записывают структуру всего рассуждения в виде сложного высказывания. При этом разделяющие два суждения точку или союз «но» заменяют знаком конъюнкции. Истинность рассуждения определяют так: сначала задаются все возможные наборы истинностных значений переменных, затем определяют истинностное значение входящих в рассуждение сложных высказываний, образованных из простых однократным применением логических связок, далее определяют истинностное значение входящих в рассуждение сложных высказываний, образованных из предыдущих однократным применением логических связок и т.д. до тех пор, пока не будет установлено истинностное значение всего высказывания, являющееся записью рассуждения. Все рассуждение истинно, если отвечающее ему сложное высказывание принимает значение истины при любом наборе значений переменных. Если хотя бы при одном наборе значений переменных оно принимает значение «ложь», то рассуждение считается ложным.

Пусть нам нужно проверить истинность вывода в следующем рассуждении: «Если три определенных элемента вычислительной машины имеют дефекты, то машина не будет работать. Вычислительная машина не работает. Значит, эти три элемента имеют дефекты ».

Введем следующие обозначения элементарных суждений, входящих в рассуждения:

р – три определенных элемента вычислительной машины имеют дефекты;

q - машина работает

Тогда все рассуждения можно записать в виде следующего суждения:


(p ® `q) Ù`q ® p

Составим для этого суждения таблицу истинности.

p q `p

`

p®`q

(p®`q)Ù`

((p®`)Ù`q)®p

0 0 1 1 1 1 0
0 1 1 0 1 0 1
1 0 0 1 1 1 1
1 1 0 0 0 0 1

Для набора значения переменных 0,0 все суждения ложно. Значит заключение ложно. Здесь под ложностью понимается, что оно не всегда истинно.


Информация о работе «Сущность суждения»
Раздел: Философия
Количество знаков с пробелами: 15745
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
25526
0
0

... предложения, которые суждений не выражают. Например: “Кто сегодня дежурный?”, “Вызваны ли свидетели?”, “Войдите!”, “Следуйте за мной” и т.д. Вопросительное предложение не выражает суждения, так как его назначение состоит не в передаче информации, а в побуждении к ее получению. Побудительное предложение, выражающее волеизъявление, направленное на осуществление определенных действий, также не ...

Скачать
29370
1
0

... и обстоятельство. В-третьих, различие между суждением и предложением состоит также в том, что каждый национальный язык имеет свой особый единый грамматический и фонетический строй. Логическая же структура суждения одинакова независимо от его выражения в том или ином языке. В-четвертых, логический строй мысли и грамматическая форма речи также не совпадают. Подлежащее в предложении должно ...

Скачать
2251
0
0

... на: - суждения существования; - атрибутивные суждения; - суждения отношения. Суждения существования - это суждения которые отражают сам факт существования или несуществования отражаемого в мысли предмета. Данный вид суждения можно выразить формулой S есть (S нет). Предикат здесь само утверждение или отрицание (сама связка). Например: “Мир существует”, “Бога нет”. Атрибутивные суждения дают ...

Скачать
67374
0
0

... - это отображение мира, находимого в виде действия в себе, т.е. такое трансцедентальное отображение себя. В какнтовской философии познавать мир и мыслить можно в зависимости от возможности этот мир представить. Термин представления также напрямую участвует в решении проблемы сознания. Кант расширяет термин “представлене”, так, чтобы учесть, что, собственно, говоря в какой области мы представляем, ...

0 комментариев


Наверх