Федеральное агентство по образованию ОУ ВПО «Якутский государственный университет им М.К. Аммосова» Технический институт (филиал) в г. Нерюнгри Кафедра технологии и техники разведки М.П.И
Курсовая работа
По дисциплине: Разрушение горных пород при бурении скважин.
Тема: Влияние горного давления на отбойку породы.
Техническое задание: Определить мощность, затрачиваемую на разрушение горных пород инструментом режуще-скалывающего действия
Выполнил: ст. гр. ТиТР-06
Денисов Д.С.
Проверил: преподаватель
Разрушения г.п. при г.р.р.
Качаев А.В.
Негрюнгри 2009
Содержание
Задание
Цель курсовой работы
Введение
Основные теоретические положения
Расчётная часть
Заключение
Список литературы
Цель курсовой работы
Основная цель курсовой работы заключается в практическом закреплении знаний в области теории и практики расчета. В процессе выполнения курсовой работы приобретаются навыки расчета мощности затрачиваемой на разрушение горных пород инструментом режуще-скалывающего действия. Кроме того получается опыт работы с научно-технической литературой по соответствующей тематике, который в дальнейшем будет полезен после окончания ВУЗа.
Введение
На процесс механического разрушения пород оказывают влияние целый ряд факторов, к числу которых относятся характер нагружения инденторов, форма индентора и образование продуктов разрушения.
Влияние, характера нагружения индентора. По характеру действия в общем случае нагружение индентора может быть статическим и динамическим.
При статическом внедрении индентора действует медленно нарастающая или постоянная по величине нагрузка, от уровня которой, как было показано ранее, зависит конечный эффект вдавливания индентора.
Динамическое внедрение происходит при воздействии на индентор быстронарастающей по величине за сравнительно короткий промежуток времени нагрузки, при которой существенное значение приобретают силы инерции в разрушаемом массиве породы.
Динамические нагрузки в процессах разрушения горных пород при бурении скважин играют большую роль, как при ударно-вращательном способе бурения, так и при вращательном. Однако существуют способы, в которых главную роль играют статические нагрузки (задавливание ПРИ).
Основными параметрами, характеризующими действующие нагрузки при внедрении индентора, определяющими скорость деформации породы и конечные результаты процесса её разрушения, являются время нагружения, скорость нагружения (или скорость соударения индентора с породой) и величина создаваемой нагрузки, статической или динамической.
Время нагружения t характеризует период контакта индентора с породой, в течение которого нарастающая нагрузка достигает максимальной величины, вызывающей деформацию породы.
При статическом вдавливании время нагружения колеблется от 1,5 до 4 мин. При динамическом внедрении оно составляет 5,0-0,3510-4 с.
Скоростью нагружения VH является скорость нарастания нагрузки от нуля до максимума и, соответственно, напряжений в породе при вдавливании индентора, при котором происходит разрушение образца в некотором объёме
,
где VH - скорость нагружения, Па/с; σ - напряжение, возникающее в породе при вдавливании индентора, Па; tH - время нарастания напряжения до критического значения или время нагружения, с.
Скорость соударения индентора с породой Vc характеризует скорость встречи индентора с поверхностью образца породы при его перемещении (падении) или конечную скорость падения груза. При этом может перемещаться (падать с некоторой высоты) сам индентор или по нему наносит удар падающий груз-боёк. Измеряется этот параметр в м/с.
При исследованиях влияния этого фактора скорость соударения индентора с породой в некоторых опытах достигала >50 м/с. В практике бурения скважин она составляет значительно меньшую величину.
Влияние скорости нагружения при динамическом внедрении индентора сказывается, прежде всего, на проявлении ряда свойств и эффективности разрушения горных пород. Исследованиями установлено, что механические свойства горных пород (твёрдость, пластичность и др.), находящихся в любом напряженном состоянии, зависят от скорости деформирования (рис.1).
В пределах небольших скоростей соударения (от 0 до 5 м/с) влияние этого фактора на конечные результаты внедрения индентора практически не отличаются от случая статического вдавливания. При более значительных скоростях соударения многие показатели существенно меняются имея оптимальные значения: величина деформации породы и глубин лунки h разрушения достигают максимума только при определённых значениях скорости соударения (в рассмотренном случае - около 10 м/с) твёрдость на вдавливание индентора Рв и объёмная удельная работа разрушения АУ0Б с ростом скорости соударения Vc возрастают до какого-то момента медленно и далее довольно резко; коэффициент пластичности Кпл c ростом скорости соударения быстро уменьшается (для мрамора при 40 м/с он становится равным единице), как показано на рис. 1.
Рис. 1. Графики изменения свойств пород в зависимости от скорости нагружения индентора: 5 - упругая деформация породы; h - глубина лунки разрушения; т - время контакта индентора с породой; Кп - коэффициент пластичности; Рш - твердость пород при вдавливании штампа; Р0 - предел текучести породы; Av - объемная удельная работа, затрачиваемая на разрушение породы (по данным ЛА Шрейнера и др.)
Отсюда видно, что эффективное разрушение породы возможно при условии, если время контакта индентора с породой будет соответствовать времени, в течение которого напряжения в породе достигнут критической величины и наступит её разрушение. В противном случае разрушение породы может не произойти или произойдёт только частично. Энергоёмкость процесса при этом возрастёт.
Причиной изменения параметров некоторых механических свойств горных пород и конечных результатов при внедрении индентора, в зависимости от скорости деформации, многие исследователи видят в протекании в материале при нагружении, согласно теории акад. В.Д. Кузнецова, двух процессов: упрочнения и разупрочнения, или "отдыха".
Когда происходит упрочнение наблюдается рост всех сопротивлений деформации твёрдого тела. В процессе "отдыха" эти сопротивления снижаются, на что необходимо некоторое время. Это определяется скоростью деформации. Степень влияния отдыха зависит от температуры, продолжительности процесса разрушения и величины предшествующего упрочнения.
Упрочнение материала при деформации связывается с искажением кристаллической решётки, что вызывает затруднение в сдвигообразовании. При динамическом нагружении эти искажения нарастают быстрее, чем при статическом. Такие искажения частично исчезают в результате "отдыха", но чем меньше время действия напряжения или выше скорость нагружения, тем в меньшей степени снимаются искажения, возникающие в кристаллических решётках, и тем больше сопротивление породы разрушению. Иными словами, при больших скоростях нагружения разупрочнение не успевает протекать полностью, как это имеет место при статическом (медленном) нагружении, и сопротивление породы разрушению возрастает.
Влияние характера и силы нагружения на эффективность разрушения пород носит также вполне закономерный характер, как было отмечено ранее, выражающееся определённой зависимостью.
При действии статической нагрузки, зависимость эффективности РГП от величины Р имеет нелинейный скачкообразный характер.
При динамическом внедрении индентора эффективность разрушения, а следовательно и объёмная работа разрушения зависят от скорости удара и массы ударника.
Исследованиями Л.А. Шрейнера установлено, что эта зависимость имеет экстремумы и выражается кривой, имеющей минимумы и максимумы функции A=f(q). Отсюда видно, что при небольшом уровне затрачиваемой энергии объёмная работа разрушения уходит в бесконечность, т.е. разрушения породы не происходит. Минимальные значения удельной объёмной работы разрушения соответствуют периодам цикла объёмного разрушения породы. В этом случае хорошо иллюстрируется характер разрушения породы при внедрении индентора. Периодичность максимумов является следствием цикличности процесса разрушения породы при внедрении индентора.
При исследованиях этого фактора наблюдается общая тенденция к снижению объемной работы разрушения и повышению КПД разрушения с увеличением энергии удара, при наличии максимумов и минимумов, что характерно для упруго-пластичных пород. Это связано, как было показано ранее, с проявлением некоторых свойств горных пород в зависимости от характера (скорости) действия нагрузки (рис. 1).
Влияние формы индентора также сказывается определенным образом на энергоемкость разрушения горных пород. Рациональной формой ПРИ, очевидно, будет такая, при которой сопротивление породы внедрению индентора будет минимально.
... , может быть применим на всем месторождении, так как конструкция системы позволяет вести отработку рудного тела в любых горно-геологических условиях 5.Охрана труда и промышленная безопасность 5.1 Общие положения Все горно-строительные работы на руднике "Таймырский" ведутся в соответствии с требованиями "ЕПБ при разработке рудных, нерудных и россыпных месторождений полезных ископаемых ...
... горных выработок трудоемкий процесс. Специфика геологоразведочных работ в том, что они ведутся преимущественно в условиях с не достаточно развитой инфраструктурой или при ее полном отсутствии. Проходка горных выработок может осуществляться тремя основными способами: 1) механизированным с применением специальных землеройных машин; 2) вручную с применением шанцевого инструмента; 3) с применением ...
... по приведению кровли в безопасное состояние. 8. По окончании очистных работ в камере в горловине устанавливается аншлаг, запрещающий проход людей в отработанную камеру. 10. Организация проведения горных работ 10.1 Режим работы Режим работы участка – непрерывный, трехсменный. Календарный фонд рабочего времени участка 339 дней в году с учетом остановочного (11 дней) и капитального (15 дней ...
... забоя в безопасное состояние; д) погрузку и транспортировку отбитой породы; е) настилка рельсового пути; ж) сооружение водоотводной канавки; з) наращивание трубопроводов, кабелей Исходные данные для построения графика цикличности для проведения проектируемой геологоразведочной штольни: Штольня площадью поперечного сечения 6,8 м2, длиной 700 м, проходят в породах ХVII категории по ...
0 комментариев