Исследование устойчивости, решение задач линейного программирования графическим способом

2148
знаков
0
таблиц
1
изображение

Московский Авиационный Институт

(МАИ)

Отчет

По лабораторной работе №1

Тема:

"Исследование устойчивости, решение задач линейного программирования графическим способом"

Отчет выполнила:

Студентка М-22 группы

Косьяненко А.Е.

Серпухов, 2010г.


Цель работы

Применить теоретические сведения на практике, исследовать устойчивость, а также научиться решать задачи линейного программирования графическим способом.


Задание:

Решение

Заданная система уравнений-ограничений состоит из четырех уравнений-ограничений  и имеет шесть переменных , поэтому данную задачу можно решить графическим способом  на плоскости. Для этого необходимо выразить все неизвестные через две независимые переменные, в качестве которых, например, можно принять  и , являющиеся в таком случае координатными осями графика.

Из системы уравнений-ограничений следует:

Подставляя полученные значения получим уравнение целевой функции:

W=0.7х1+0.75х2+60.8+-1.6(16-2х1)-4.8(10-2х2)+14.4-3.6х1+8.5-1.7х2+15.6-2.6х1-1.95х2=0.9х1+6.7х2+25.7


Каждому из этих неравенств соответствует полуплоскость на графике, образующих ОДР, выделенную точками .

Точки(х2=0, х1=2; х2=1, х1=0.5; х1=4; х2=5; х2=0, х1=12; х2=4, х1=6)

Опираясь на уравнение ЦФ необходимо определить точку в ОДР, а значит и значение  и , максимизирующую ЦФ.

Можно по существующей зависимости между  и  (при ) построить основную линию (проходящую из начала координат), используя следующее уравнение:

.(1.12)

Далее можно построить вектор-градиент , который будет исходить из начала координат  в точку , т.к. вектор-градиент можно найти следующим образом:

Найдем максимальные и минимальные значения функции: Max(5;2); min(0;2).


Подставим значения в целевую функцию:

W=1.4+3.45+48+7.2+0.65=61

Ответ:61.

Если изменить значение в заданной линейной задаче, то можно высчитать результат:

W=0.7х1+0.85х2+0.8х3+0.9х4+0.85х5+0.65х6

Упростим до целевой функции:

W=0.9х1+6.8х2+25.7

Х1=2

Х2=5

Х4=8

Х5=0

Х6=1

х3=60

Рассчитываем значение целевой функции:

W=0.7*2+0.85*5+0.8*60+0.9*8+0.65=61,5


Вывод

В ходе лабораторного занятия, я освоила теоретические знания на практике, познакомилась с графическим способом решения задач линейного программирования.


Информация о работе «Исследование устойчивости, решение задач линейного программирования графическим способом»
Раздел: Информатика, программирование
Количество знаков с пробелами: 2148
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
62893
11
17

... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...

Скачать
15943
2
0

... ведущего столбца равными нулю. Слева от таблицы в q-ой строке запишем переменную хр. Перейти на шаг 1.   1.2 Постоптимальный анализ   Постоптимальный анализ (анализ моделей на чувствительность) – это процесс, реализуемый после того, как оптимальное решение задачи получено. В рамках такого анализа выявляется чувствительность оптимального решения к определенным изменениям исходной модели. ...

Скачать
31981
11
10

... переменных, доставляющих экстремум линейной целевой функции при m ограничениях в виде линейных равенств или неравенств. Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи: ·  рационального использования сырья и материалов; задачи оптимизации раскроя; ·  оптимизации производственной программы ...

Скачать
83422
1
0

... условиях определенности математическое программирование дает точное решение поставленной задачи. Поэтому необходимости выбирать из нескольких вариантов попросту нет. Таким образом, в условиях определенности "Теория принятия решений" не используется, такими задачами занимается математическое программирование. 2)  ЛПР знает вероятность реакции окружающей среды на выбор им той или иной альтернативы. ...

0 комментариев


Наверх