Содержание
Введение
1. Резистор (Resistor)
2. Конденсатор (Capacitor)
3. Индуктивность (Inductor)
4. Взаимная индуктивность и магнитный сердечник (К)
5. Трансформатор (Transformer)
6. Линия передачи (Transmission line)
7. Диод (Diode) и стабилитрон (Zener)
Заключение
Список литературы
Введение
Все компоненты (аналоговые и цифровые), из которых составляется электрическая принципиальная схема, имеют математические модели двух типов:
1. Встроенные математические модели стандартных компонентов, таких как резисторы, конденсаторы, диоды, транзисторы, независимые и зависимые источники сигналов, вентили и др., которые не могут быть изменены пользователями; можно только изменять значения их параметров;
2. Макромодели произвольных компонентов, составляемые пользователями по своему усмотрению из стандартных компонентов.
В свою очередь встроенные модели подразделяются на две категории:
· простые модели, характеризуемые малым количеством параметров, которые можно указать непосредственно на схеме в виде атрибутов (например, модель резистора описывается одним – тремя параметрами, причем часть из них можно сделать на схеме невидимыми, чтобы не загромождать чертеж);
· сложные модели, характеризуемые большим количеством параметров, которые заносятся в библиотеки моделей (например, модель биполярного транзистора характеризуется 52 параметрами).
В программе МС7 используется двоякое описание моделируемого устройства: в виде чертежа его принципиальной электрической или функциональной схемы или в виде текстового описания в формате SPICE. Кроме того, при составлении принципиальной схемы часть параметров моделей компонентов задаются в виде их атрибутов и указываются непосредственно на схеме — такие модели будем называть моделями в формате схем. Остальные модели задаются в текстовом окне с помощью директив .MODEL и .SUBCKT по правилам SPICE — их так и будем называть моделями в формате SPICE. В программе МС7 модели всех полупроводниковых приборов, операционных усилителей, магнитных сердечников, линий передачи и компонентов цифровых устройств имеют формат SPICE.
В меню компонентов в раздел пассивные компоненты (Passive components) включены резисторы, конденсаторы, индуктивности, линии передачи, высокочастотные трансформаторы, взаимные индуктивности, диоды и стабилитроны.
Обратим внимание, что значения сопротивлений, емкостей и индуктивностей могут быть числом или выражением, зависящим от времени, узловых потенциалов, разности узловых потенциалов или токов ветвей, температуры и других параметров (причем непосредственная зависимость параметров от времени в программе PSpice не предусмотрена, здесь Micro-Cap явно лидирует).
1. Резистор (Resistor)
Формат схем МIСROCAP-7:
Атрибут PART: <имя> ;позиционное обозначение
Атрибут VALUE: <значение> [ТС=<ТС1>[,<ТС2>]] ;величина сопротивления
Атрибут MODEL: [имя модели]
Атрибут FREQ: [<выражение>] — например 10*f*v(10), при этом значение атрибута FREQ заменяет значение атрибута VALUE при расчете режима по постоянному току и проведении АС-анализа (здесь f — частота), при расчете переходных процессов сопротивление резистора равно значению атрибута VALUE;
SLIDER_MIN — минимальное относительное значение сопротивления, изменяемого в режиме Dynamic DC с помощью движкового регулятора;
SLIDER_MAX — максимальное относительное значение сопротивления, изменяемого в режиме Dynamic DC с помощью движкового регулятора;
Сопротивление резистора, определяемое параметром <значение>, может быть числом или выражением, включающим в себя изменяющиеся во времени переменные, например 100+V(10)*2. Эти выражения можно использовать только при анализе переходных процессов. В режиме АС эти выражения вычисляются для значений переменных в режиме по постоянному току.
Рис. 1. Окно задания параметров резистора
Параметры, описывающие модель резистора в MICROCAP-7, приведены в табл. 1.
Таблица 1. Параметры модели резистора
Обозначение | Параметр | Размерность | Значение по умолчанию |
R | Масштабный множитель сопротивления | — | 1 |
ТС1 | Линейный температурный коэффициент сопротивления | °C-1 | 0 |
ТС2 | Квадратичный температурный коэффициент сопротивления | °C-2 | 0 |
ТСЕ | Экспоненциальный температурный коэффициент сопротивления | %/°C | 0 |
NM | Масштабный коэффициент спектральной плотности шума | — | 1 |
T_MEASURED | Температура измерения | °C | — |
T_ABS | Абсолютная температура | °C | — |
T_REL_GLOBAL | Относительная температура | °C | — |
T_REL_LOCAL | Разность между температурой устройства и модели-прототипа | °C | — |
Если в описании резистора <имя модели> опущено, то его сопротивление равно параметру <сопротивление> в Омах. Если <имя модели> указано и в директиве .MODEL отсутствует параметр ТСЕ, то температурный фактор равен
TF = 1 + ТС1×(Т – TNOM)+TC2×(T – TNOM)2;
если параметр ТСЕ указан, то температурный фактор равен
TF =1,01TCE(T-TNOM) .
Здесь Т — текущее значение температуры (указывается по директиве .TEMP); TNOM = 27 °С — номинальная температура (указывается в окне Global Settings).
Параметр <значение> может быть как положительным, так и отрицательным, но не равным нулю. Сопротивление резистора определяется выражением:
<значение>*R*ТF*МF,
где МF=1±<разброс в процентах, DEV или LOT>/100.
Спектральная плотность теплового тока резистора рассчитывается по формуле Найквиста:
Si(f)=4kT/<сопротивление>*NM.
Для резисторов с отрицательным сопротивлением в этой формуле берется абсолютное значение сопротивления.
... графики переходных процессов, заданных для анализа величин (напряжений в узлах схемы, падений напряжений на двухполюсных элементах, токов в ветвях схемы и т.п.). На рис. 2 показан результат моделирования переходных процессов в пассивной линейной цепи второго порядка, электрическая схема которой приведена в правом окне. Рис. 2 В окно анализа выведены следующие графики: V(1) – импульсный ...
... и аналого-цифровых устройств. Она состоит из нескольких основных модулей и ряда вспомогательных программ. Заметим, что материал данной книги ориентирован на конструкторов, поэтому программа моделирования схем, также входящая в состав пакета, здесь не рассматривается, тем более что она представляет собой абсолютно автономный модуль. Кратко рассмотрим назначение составных частей системы. ...
... более подробные) сведения могут быть получены из встроенной подсказки системы (вызывается клавишей <F1> или через меню ПОМОЩЬ). Какие программы сквозного проектирования радиотехнических устройств вы знаете? Одними из важных средств современной организации труда являются системы автоматизированного проектирования (САПР), ориентированные на подготовку чертежей, составление спецификаций, ...
... один почти неизвестный в России, но достаточно мощный и популярный в мире продукт - Visula компании Zuken. Продукты этой компании обеспечивают сквозной цикл проектирования и предлагают мощные средства моделирования и синтеза программируемой логики с последующей разработкой печатной платы. Здесь имеется стандартный набор инструментария, а также собственные средства авторазмещения и автотрассировки ...
0 комментариев