Развитие силовых установок во всех областях техники в настоящее время характеризуется резким увеличением мощности в одном агрегате, повышением эффективного к.п.д. установок. Успешное решение этих задач не возможно без применения совершенных теплообменных устройств.
В зависимости от назначения аппараты используют как нагреватели и как охладители. Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой.
Рекуперативными называют теплообменники, в которых теплообмен между теплоносителями происходит через разделяющую их стенку. Они могут работать как в непрерывном, так и в периодических режимах. Большинство рекуперативных теплообменников работают в непрерывном режиме.
Кожухотрубчатые теплообменники получили наибольшее распространение, они предназначены для работы с теплоносителями жидкость-жидкость, газ-газ и представляют собой аппараты выполняемые из пучков труб. По количеству ходов все кожухотрубчатые теплообменники делят на: одна, двух, четырёх и шестиходовые.
Пластинчатые теплообменники имеют плоские параллельные поверхности теплообмена, которые образуют каналы для прохода теплоносителей. Такие теплообменники применяют для теплоносителей с примерно равными коэффициентами теплоотдачи. Для интенсивности процесса теплообмена и для увеличения площади поверхности теплообмена пластинам придают различный профиль.
Выполнение курсовой работы по курсу «Тепломассообмен» позволит закрепить знания по основным разделам дисциплины.
Курсовая работа состоит из расчётной части и графической и выполняется по следующим разделам:
1. Тепловой конструктивный расчёт рекуперативного кожухотрубчатого теплообменника.
2. Тепловой расчёт пластинчатого теплообменника.
1. ТЕПЛОВОЙ КОНСТРУКТИВНЫЙ РАСЧЕТ РЕКУПЕРАТИВНОГО КОЖУХОТРУБЧАТОГО ТЕПЛООБМЕННИКА
Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Теплообменники предназначены для нагрева и охлаждения, а холодильники для охлаждения (водой или другим нетоксичным, непожаро- и невзрывоопасным хладагентом) жидких и газообразных сред. Кожухотрубчатые теплообменники могут быть следующих типов: ТН – теплообменники с неподвижными трубными решетками; ТК – теплообменники с температурными компенсаторами на кожухе и жестко закрепленными трубными решетками; ТП – теплообменники с плавающей головкой, жестким кожухом и жестко закрепленной трубной решеткой; ТУ – теплообменники с U-образными трубками, жестким кожухом и жестко закрепленной трубной решеткой; ТС – теплообменники с сальником на плавающей головке, жестким кожухом и жестко закрепленной трубной решеткой (рисунок 1, Приложение 1).
Наибольшая допускаемая разность температур кожуха и труб для аппаратов типа Н может составлять 20–60 ºС, в зависимости от материала кожуха и труб, давления в кожухе и диаметра аппарата.
Теплообменники и холодильники могут устанавливаться горизонтально или вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников – из латуни. Распределительные камеры и крышки выполняют из углеродистой стали.
Данный расчет проводится для определения площади поверхности теплообмена стандартного водо-водяного рекуперативного теплообменника, в котором греющая вода поступает в трубы, нагреваемая вода – в межтрубное пространство.
Задание: Выполнить тепловой конструктивный расчет водоводяного рекуперативного подогревателя производительностью Q. Температура греющего теплоносителя на входе в аппарат ºС. Температура нагреваемого теплоносителя на входе в теплообменник ºС, изменение температуры нагреваемого теплоносителя в аппарате К. Массовый расход греющего теплоносителя – кг/с, нагреваемого теплоносителя – кг/с. Поверхность нагрева выполнена из труб диаметром мм.
Трубы в трубной решетке расположены по вершинам равносторонних треугольников. L – длина труб, предварительно принимается равной 3,0 м. Схема движения теплоносителей – противоток. Материал труб теплообменного аппарата выбирается в соответствии с вариантом. Потерями тепла в окружающую среду пренебречь.
... либо неиспаряющимся, циркуляционным (колонна 4). Кроме того, в колоннах 2 и 4 с помощью циркуляц. орошения теплота отводится на промежут. тарелках. 7. Схема контроля и регулирования кожухотрубчатый теплообменный аппарат Любой технологический процесс в том числе и процесс обмена тепла между фракцией 230-3500 С и сырой нефть, протекающий в кожухотрубчатом теплообменном аппарате нуждается в ...
... 516, т. IX, [1]). Рассчитаем значения Re и Pr: Коэффициент теплоотдачи: Коэффициент теплопередачи: Погрешность расчета: Заключение Для достижения поставленной цели в данной семестровой работе рассматривались только нормализованные теплообменные аппараты (холодильники), без рассмотрения экономических факторов, таких как: металлоемкость, себестоимость, вес ...
... округления равна: δ = 0,8 ∙ 0,392 / (2 ∙ 140 ∙ 0,95) + 0,001 = 0,0022 м = 2,2 мм. Условие (0,0022 - 0,001) / 1 < 0,1 выполняется. На основании данных практического использования кожухотрубчатых теплообменных аппаратов принимаем толщину стенки кожуха равной 4мм.=0,004м. Допускаемое избыточное давление в обечайке можно определить из формулы: рд = 2 ∙ σ ...
... , но могут применяться только при сравнительно небольших разностях температур между корпусом и пучком труб (до 50 oС). Они имеют низкие коэффициенты теплопередачи вследствие незначительной скорости теплоносителя в межтрубном пространстве. Рис. - Схема кожухотрубного одноходового ТО Линзовые компенсаторы типа КЛО Линзовые компенсаторы предназначены для компенсации температурных линейных ...
0 комментариев