3. Выбор числа и мощности трансформаторов связи на ГЭС

При выборе главных схем ГЭС необходимо учитывать их особенности.

Как правило ГЭС сооружается вблизи к источнику мощных водных ресурсов и вдали от потребителей, соответственно вся мощность выдается на одном или двух высоких напряжениях. Эта особенность ГЭС позволяет применить блочную схему генератор-трансформатор не предусматривая сборных шин генераторного напряжения. Увеличение установленной мощности ГЭС исключено, так как она проектируется изначально по максимальному водотоку, следовательно и число линий высокого напряжения не увеличивается, не требуется в перспективе расширения РУ.

Главные трансформаторы (трансформаторы связи с системой) устанавливаются в условиях ограниченной площадки нижнего или верхнего бьефа. Это вызывает необходимость сооружения укрупненных энергоблоков – по 2 – 3 генератора на один трансформатор связи. На мощных ГЭС связь с системой осуществляется обычно с помощью автотрансформаторов.

В схемах присоединения к сети крупных ГЭС на всех этапах ввода мощности рекомендуется обеспечивать возможность выдачи всей располагаемой мощности станции (за вычетом нагрузки распределительной сети и собственных нужд) в любой период суток или года как при работе всех отходящих линий, так и отключении одной из линий.

Современные крупные электростанции сооружаются без РУ генераторного напряжения. На электростанциях рекомендуется применять не более двух РУ повышенных напряжений (220-500 кВ, 330-750 кВ, 500-1150 кВ). Оптимальное распределение генераторов между РУ разных напряжений зависит от их единичной мощности и схемы сети района размещения станции. Современные ГЭС сооружаются с генераторами мощностью до 640 МВт. Сооружение третьих РУ (как правило, 110 кВ) встречается крайне редко - на действующих электростанциях при нагрузке местного района, соизмеримой с мощностью генераторов. Большая часть ГЭС сооружается с системой напряжений 220-500 кВ.

Расчетную мощность автотрансформаторов связи, включенных между РУ высшего и среднего напряжения определяют на основе анализа перетоков мощности между этими РУ в нормальном и аварийном режимах. В частности, необходимо рассматривать отключение одного из блоков, присоединенных к РУ СН. При выборе числа автотрансформаторов связи учитывают, во-первых, требуемую надежность электроснабжения потребителей сети СН, а во-вторых, допустимость изолированной работы блоков на РУ СН. Если нарушение связи между РУ высшего и среднего напряжений влечет за собой недоотпуск электроэнергии потребителям или окажется, что минимальная нагрузка сети СН ниже технологического минимума мощности отделившихся блоков, то предусматривают два автотрансформатора связи.

Выбор трансформаторов связи.

Для этой цели составляют и анализируют предполагаемые графики нагрузки трансформаторов:

а) в нормальном режиме;

б) при отключении одного из работающих генераторов.

Мощность, передаваемая через трансформаторы связи, в общем случае (при разных значениях коэффициентов мощности генераторов, местной нагрузки и собственных нужд) равняется:

Sрасч = ( P∑г − Рс.н. − Рм.н. ) 2 + (Q∑г − Qс.н. − Qм.н. ) 2 ,

где РΣг,QΣг – суммарные активная и реактивная мощности генераторов, присоединенных к ГРУ.

Руководствуясь соображениями надежности на ГЭС, как правило, предусматривают два трансформатора связи с системой. Однако даже при наличии условий, определяющих принципиальную возможность выбора одного трансформатора связи, из соображений уменьшения перетоков мощности между секциями обычно устанавливают все-таки два трансформатора связи.

При выборе номинальной мощности трансформаторов связи учет нагрузочной способности зависит от режима, определившего расчетную (наибольшую) мощность. Если вероятность расчетного режима достаточно велика (плановое или аварийное отключение одного генератора на станции, аварийная ситуация в системе), то при выборе номинальной мощности можно идти лишь на перегрузку без сокращения срока службы (Кп,сист). В тех случаях, когда расчетный режим редкий (отказ одного из трансформаторов связи), при выборе Sном используют коэффициент допустимой аварийной перегрузки Кп,ав.

Расчетный коэффициент аварийной перегрузки трансформаторов при проектировании принимается равным 1,4. Такая перегрузка допустима в течении не более 5 суток при условии, если коэффициент начальной нагрузки не более 0,93, а длительность максимума нагрузки не более 6 часов в сутки.

4. Задача №1

Условие:

Выбрать ошиновку в цепи генератора на ТЭЦ в пределах ГРУ.

Sном = 125 МВА, Uном = 10,5 кВ,

Токи КЗ в цепи генератора:

Iпо = 36 кА; Inτ = 30 кА; iey = 100 кА; iaτ = 30 кА; (tотк + Та) = 4,25 с.

Шины располагаются горизонтально, а = 0,8м., l = 1,5м.

Среднемесячная температура наиболее жаркого месяца +25˚С.

Решение:

Наибольший ток в цепи генератора и ошиновки Iмах = Рном/√3·Uном·0,95·cosφ где Рном = Sном х cosφ

Iмах = 125/√3 · 10,5 · 0,95 = 7235 (А)

Принимаем шины коробчатого сечения 2х(200х90х10х14) Iдоп= 7550 < Iмах

Поправочный коэффициент равен 1

Проверяем шины на термическую стойкость:

Iпо = 36 кА Þ bк= Iпо2 × (tотк + Та) = 362 × 4,25 = 5508×103 (А2×с)


Минимальное сечение по термической стойкости q:

qmin =  =  = 25,79 (мм2)

проверим шины на механическую прочность:

iey = 100 кА ; шины коробчатого сечения обладают большим моментом инерции Þ расчет производим без учета колебательного процесса в конструкции. Момент сопротивления жестко сваренных по всей длине шин принимаем 422 см3:

sФмах =  ×  = 1,73 ×  = 1,153 (МПа)

Шины механически прочны.

5. Задача 2

По условию задачи 1 выбрать опорные и проходные изоляторы в цепи генератора.

Выбираем опорные изоляторы ИП10/8000-4250У2, номинальное напряжение 10 кВ, номинальный ток 8 кА, минимальное разрушающее усилие на изгиб Fмин = 4250 (Н), с поправкой на высоту коробчатых шин:

высота изолятора Низ = 711 (мм), с = 10 (мм), h/2 = 200/2 = 100 (мм).

Fи = Кh × iуд2 × l × 10-7 : а; где Кh = (Низ+с+h/2) / Низ = (711+10+200 : 2) : 711 = 1,15 Þ Fи = 1,15 × 1000002 × 1,5 × 10-7 : 0,8 = 2156,2 (Н);

Fрасч = Кh × Fи = 2156,2 × 1,15 = 2479,6 (Н) < Fмин= 4250 (Н).

Проходные изоляторы выбираем той же марки, с теми же характеристиками.

6. Задача 3

По условию задачи 1 выбрать выключатель, разъединитель, трансформатор тока и напряжения для измерительных приборов в цепи генератора.

Выбираем выключатель МГУ-20;

Проверка выключателя производится по параметрам:

По напряжению установки: МГУ-20 на напряжение 20 кВ > Uном;

По длительному току: Iном.= 6300А;

При принудительном охлаждении первичной цепи Iном.= 9500А > Iмах = 7235 А;

По отключающей способности:

Iоткл = 90 кА > Iпо = 36 кА

Iтерм. = 105 кА (tпротек= 3 с.) > 30 кА;

Iey = 300 кА > ieyG = 100кА;

Выбираем разъединитель по таблице П4.1 РВЗ-20-8000

Iном = 8000 кА > Iмах = 7235 А;

Iтерм. = 120 кА (tпротек= 4 с.) > 30 кА;

Iey = 300 кА > ieyG = 100кА;

Выбор измерительных трансформаторов тока:

Поскольку сопротивление приборов и цепи не задано, выбор по вторичной нагрузке опускаем, следовательно выбираем трансформаторы тока по напряжению и номинальному току генератора:

Выбираем ТШВ-15/8000;

Uном.тр.= 15кВ > UномG = 10,5 кВ;

Iном1 = 8000 кА > Iмах = 7235 (А);

Выбираем трансформатор напряжения


Литература

1.  Чунихин А. А. Электрические аппараты.—3-е изд. перераб. и доп. -- М.: Энергоатомиздат, 1988.

2.  Родштейн Л. А. Электрические аппараты: Учебник для техникумов. Л.: Энергоатомиздат. Ленингр. отделение, 1989.

3.  2005-2009 ФГУ ГНИИ ИТТ "Информика".

4.  2005-2009 Федеральное агентство по образованию.

5.  Рожкова Л.Д., Козулин В.С., Электрооборудование электростанций и подстанций: учебник для техникумов. – 3-е издание переработанное и дополненное – М.: Энергоатомиздат, 1987 год.


Информация о работе «Электрооборудование электрических станций и подстанций»
Раздел: Физика
Количество знаков с пробелами: 16753
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
36473
0
4

... выше необходимо рассчитывать ток однофазного КЗ . Если , то необходимо принять меры по его ограничению, чтобы выполнялось условие 3.6  Выбор электрических аппаратов При проектировании подстанции необходимо выбрать: • выключатели в РУ ВН, (СН), НН; • разъединители; Выключатели в зависимости от применяемых в них дугогасительной и изолирующей сред подразделяются на масляные, воздушные, ...

Скачать
149476
14
8

... ОПН. ОПН устанавливается вместо РВ на опорах ВЛ в местах с ослабленной изоляцией, в начале и конце защищенного подхода перед подстанцией на опорах вокруг пересечений ВЛ, на длинных переходах ВЛ и т.д. На первый взгляд применение ОПН представляется простым и эффективным решением задачи по ограничению перенапряжений. Исключение из ограничителя коммутирующих искровых промежутков повышает надежность ...

Скачать
173046
41
10

... меры к его понижению (забивка дополнительных электродов и т.д.). Глава 7. РАСЧЁТ ПОКАЗАТЕЛЕЙ ЭКОНОМИЧСЕКОЙ ЭФФЕКТИВНОСТИ ПРОЕКТА В данной главе рассмотрим вопросы капиталовложений при реконструкции подстанции, расчет эксплуатационных затрат при проведении текущих ремонтов и технических обслуживаний, определение затрат на потреблённую электроэнергию, расчет экономических показателей при ...

Скачать
75372
24
5

... кА ίУ(3), кА I″(3), кА ίУ(3), кА Точка К1 1,52 3,45 2,9 6,6 Точка К2 4,12 10,46 7,2 18,3 2.4 Выбор электрических аппаратов и токоведущих частей для заданных цепей 2.4.1 Выбор выключателей для цепей 35 и 10 кВ На подстанции номер 48П «Петрозаводская птицефабрика» установлены масляные выключатели, которые физически и морально устарели, из-за ...

0 комментариев


Наверх