1. Основные органы релейной защиты
Пусковые органы
Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.
Измерительные органы
Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.
Логическая часть
Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.
Пример логической части релейной защиты
Катушка реле тока K1 (контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока ТА. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения уставки реле K1, оно сработает и замкнёт рабочие контакты(11 и 12). Цепь между шинками +EC и -EC замкнётся, и запитает сигнальную лампу HLW. Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.
2. Повреждения и ненормальные режимы работы в энергосистемах
Повреждения вызывают появление значительных аварийных токов и сопровождаются глубоким понижением напряжения на шинах ЭС и ПС. Ток повреждения выделяет большое количество теплоты, которое вызывает сильное разрушение в месте повреждения и опасное нагревание проводов неповрежденных ЛЭП и оборудования, по которым этот ток проходит. Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы ЭС энергосистемы. (ЭЭС).
Ненормальные режимы обычно приводят к отклонению напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости ЭЭС, а повышение напряжения и тока угрожает повреждением оборудования и ЛЭП.
Для уменьшения разрушений в месте повреждения и обеспечения нормальной работы неповрежденной части ЭЭС необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной части ЭЭС. Опасные последствия ненормальных режимов так же можно предотвратить, если своевременно принять меры к их устранению (например, снизить ток или напряжение при их увеличении), а при необходимости отключить оборудование, оказавшееся в недопустимом для него режиме.
Короткие замыкания, возникающие в электрических сетях, машинах и аппаратах, отличаются большим разнообразием как по виду, так и по характеру повреждения. Для упрощения расчетов и анализа поведения релейной защиты при повреждениях исключаются отдельные факторы, не оказывающие существенного влияния на величины токов и напряжений. В частности, как правило, не учитывается при расчетах переходное сопротивление в месте к. з. и все повреждения рассматриваются как «глухое» или, как говорят, «металлическое» соединение фаз между собой или на землю для сети с заземленной нейтралью. Не учитываются токи намагничивания силовых трансформаторов и емкостные токи линий напряжением до 330—500 кВ. Сопротивления всех трех фаз считаются одинаковыми.
Основные виды коротких замыканий приведены на рис. 1. Междуфазные короткие замыкания — двухфазные и трехфазные — возникают как в сетях с заземленной, так и в сетях с изолированной нейтралью. Однофазные короткие замыкания могут происходить только в сетях с заземленной нейтралью.
Основными причинами, вызывающими повреждения на линиях, являются перекрытия изоляции во время грозы, схлестывание и обрывы проводов при гололеде, набросы, перекрытия загрязненной и увлажненной изоляции, ошибки персонала и др.
Трехфазное короткое замыкание
Симметричное трехфазное короткое замыкание — наиболее простой для расчета и анализа вид повреждения. Он характерен тем, что токи и напряжения во всех фазах равны по величине как в месте к. з., так и в любой другой точке сети: Так как все фазные и междуфазные напряжения в месте трехфазного короткого замыкания равны нулю, а в точках, удаленных от места к.з. на небольшое расстояние, незначительны по величине, рассматриваемый вид повреждения представляет наибольшую опасность для работы энергосистемы.
Двухфазное короткое замыкание
При двухфазном к.з. токи и напряжения разных фаз неодинаковы. С точки зрения влияния на устойчивость параллельной работы генераторов и на работу электродвигателей рассматриваемый вид повреждения представляет значительно меньшую опасность, чем трехфазное короткое замыкание.
Двухфазное короткое замыкание на землю в сети с заземленной нейтралью
Этот вид повреждения для сетей с изолированной нейтралью практически не отличается от двухфазного короткого замыкания. Токи, проходящие в месте к. з. и в ветвях рассматриваемой схемы, а также междуфазные напряжения в разных точках сети имеют те же самые значения, что и при двухфазном к. з.
В сетях же с заземленной нейтралью двухфазное к. з. на землю значительно более опасно, чем двухфазное короткое замыкание. Это объясняется более значительным снижением междуфазных напряжений в месте короткого замыкания, так как одно междуфазное напряжение уменьшается до нуля, а два других — до величины фазного напряжения неповрежденной фазы.
Однофазное короткое замыкание в сети с заземленной нейтралью
Однофазное короткое замыкание может иметь место только в сетях с заземленной нейтралью (как правило, с заземленной нейтралью работают сети напряжением 110 кВ и выше). Однофазные короткие замыкания, сопровождающиеся снижением до нуля в месте повреждения одного
фазного напряжения, представляют меньшую опасность для нормальной работы энергосистемы, чем рассмотренные выше междуфазные к. з.
Однофазное замыкание на землю в сети с малым током замыкания на землю
В сетях с малыми токами замыкания на землю, к которым относятся сети 3—35 кВ, работающие с изолированной нейтралью или с нейтралью, заземленной через дугогасящую катушку, замыкания одной фазы на землю сопровождаются значительно меньшими токами, чем короткие замыкания.
Для снижения тока замыкания на землю применяются специальные компенсирующие устройства — дугогасящие катушки, которые подключаются между нулевыми точками трансформаторов или генераторов и землей. В зависимости от настройки дугогасящей катушки ток замыкания на землю уменьшается до нуля или до небольшой остаточной величины. Поскольку токи замыкания на землю имеют небольшую величину, а все междуфазные напряжения остаются неизменными, однофазное замыкание на землю не представляет непосредственной опасности для потребителей. Защита от этого вида повреждения, как правило, действует на сигнал.
Однако длительная работа сети с заземленной фазой нежелательна, так как длительное прохождение тока в месте замыкания на землю, а также повышенные в 1,73 раза напряжения неповрежденных фаз относительно земли могут привести к пробою или повреждению их изоляции и возникновению двухфазного к. з. Поэтому согласно Правилам технической эксплуатации допускается работа сети с заземлением одной фазы только в течение 2 ч. За это время оперативный персонал с помощью устройств сигнализации должен обнаружить и вывести из схемы поврежденный участок.
В сетях, питающих торфопредприятия и передвижные строительные механизмы, для обеспечения условий безопасности обслуживающего персонала защита от замыканий на землю выполняется с действием на отключение.
... задаются в поле задания уставок. 6. Безопасность и экологичность проекта В основной части дипломного проекта рассмотрены вопросы, связанные с модернизацией релейной защиты РУ-27,5 кВ тяговой подстанции Заудинск ВСЖД. Наличие на подстанции высоковольтного оборудования и значительных по величине токов определяет выбор темы, и содержание раздела "Безопасность и экологичность проекта", связанных ...
... концу горизонтального участка тормозной характеристики, поскольку в этом случае на реле отсутствует эффект торможения. Однако на блоках генератор-трансформатор, не имеющих устройства регулирования напряжения под нагрузкой, условие отстройки минимального тока срабатывания защиты от тока небаланса в указанных режимах не проверяется, так как автоматически выполняется при выборе тока срабатывания ...
... собственный емкостной ток двигателя Ток срабатывания защиты минимальный равен 1,33 А, максимальный 5,66 А. Уставка реле с током срабатывания защиты от замыканий на землю 1,51 А входит в эту зону. 3. Разработка систем автоматики 3.1 Автоматическое включение синхронных машин на параллельную работу Точная автоматическая синхронизация предназначена для выполнения без ...
... асинхронного двигателя напряжением 6-10 кВ Тип двигателя Рн, кВт Кпуск cosφн ηн КЛ, м АТД4 4000 5,7 0,89 0,973 55 Рис. 1. Схема электроснабжения АННОТАЦИЯ Чупина М. В. Релейная защита СЭС. – Челябинск: ЮУрГУ, Э, 2009, 43 с. 6 ил. 4 табл., библиогр. список – 4 наим. Задачей данного курсового проекта является рассмотрение вопросов проекти- ...
0 комментариев