2.2 Механизмы сна
Один из главных вопросов, волновавших физиологов еще со времен Павлова, – это существование в мозге «центра сна». Во второй половине нашего столетия прямое изучение нейронов, вовлеченных в регуляцию сна-бодрствования, показало, что нормальная работа таламокортикальной системы мозга, обеспечивающая сознательную деятельность человека в бодрствовании, возможна только при участии определенных подкорковых, так называемых активирующих, структур. Благодаря их действиям в бодрствовании мембрана большинства кортикальных нейронов деполяризована на 10–15 мВ по сравнению с потенциалом покоя – (65–70) мВ. Только в состоянии этой тонической деполяризации нейроны способны обрабатывать информацию и отвечать на сигналы, приходящие к ним от других нервных клеток (рецепторных и внутримозговых).
Как сейчас ясно, таких систем тонической деполяризации, или активации мозга (условно «центров бодрствования»), несколько – вероятно, пять или шесть. Располагаются они на всех уровнях мозговой оси: в ретикулярной формации ствола, в области голубого пятна и дорзальных ядер шва, в заднем гипоталамусе и базальных ядрах переднего мозга. Нейроны этих отделов выделяют медиаторы – глутаминовую и аспарагиновую кислоты, ацетилхолин, норадреналин, серотонин и гистамин, активность которых регулируют многочисленные пептиды, находящиеся с ними в одних и тех же везикулах. У человека нарушение деятельности любой из этих систем не компенсируется за счет других, несовместимо с сознанием и приводит к коме.
Казалось бы, если в мозге есть «центры бодрствования», то по крайней мере должен быть один «центр сна». Однако в последние годы выяснилось, что в сами «центры бодрствования» встроен механизм положительной обратной связи. Это особые нейроны, которые осуществляют торможение активирующих нейронов и сами тормозятся ими. Такие нейроны разбросаны по разным отделам мозга, хотя больше всего их в ретикулярной части черного вещества. Все они выделяют один и тот же медиатор – гамма-аминомасляную кислоту, главное тормозное вещество мозга. Стоит только активирующим нейронам ослабить свою деятельность, как включаются тормозные нейроны и ослабляют ее еще сильнее. В течение некоторого времени процесс развивается по нисходящей, пока не срабатывает некий «триггер» и вся система переключается либо в состояние бодрствования, либо парадоксального сна. Объективно этот процесс отражает смена картин электрической активности головного мозга (ЭЭГ) по ходу одного полного цикла сна человека (90 мин).
В последнее время внимание исследователей привлечено еще к одной эволюционно древней тормозной системе головного мозга, использующей в качестве медиатора нуклеозид аденозин. Японский физиолог О. Хаяйси с коллегами показали, что синтезируемый в мозге простагландин D2 участвует в модуляции аденозинэргических нейронов. Поскольку главный фермент этой системы – простагландиназа-D – локализован в мозговых оболочках и хороидном плексусе, очевидна роль этих структур в формировании определенных видов патологии сна: гиперсомнии при некоторых черепно-мозговых травмах и воспалительных процессах менингеальных оболочек, африканской «сонной болезни», вызываемой трипаносомой, которая передается через укусы мухи цеце и пр.
Прямая регистрация одиночной активности нейронов мозга в экспериментах на лабораторных животных показала, что в бодрствовании (в состоянии тонической деполяризации) характер разрядов таламокортикальных клеток высоко индивидуален. Но по мере углубления сна и нарастания синхронизированной активности в ЭЭГ начинают преобладать более мощные тормозные постсинаптические потенциалы, перемежающиеся периодами экзальтации – высокочастотными вспышками нейронных разрядов (такой рисунок нейронной активности называется «пачка-пауза»). Тогда появляется «хоровая» активность нейронов, и условия для переработки информации в мозге, причем не только поступающей от органов чувств, но и хранящейся в памяти, резко ухудшаются. Однако средняя частота импульсации корковых и таламических нейронов не снижается, а у ГАМК-эргических (тормозных) нейронов она даже значительно повышается. Что касается активирующих нейронов, то их разряды становятся реже. Эти нейрофизиологические феномены хорошо коррелируют с известными данными о постепенном торможении психической активности по мере углубления медленного сна у человека.
Если с точки зрения нейронной активности бодрствование – это состояние тонической деполяризации, то медленный сон – тоническая гиперполяризация. При этом направление движения через клеточную мембрану основных ионных потоков (катионов Na+, K+, Ca2+, анионов Cl–), а также важнейших макромолекул меняется на противоположное.
Таким образом, можно было бы сказать, что во время медленного сна восстанавливается мозговой гомеостаз, нарушенный в ходе многочасового бодрствования. С этой точки зрения бодрствование и медленный сон – как бы «две стороны одной медали». Периоды тонической деполяризации и гиперполяризации должны периодически сменять друг друга, чтобы сохранить постоянство внутренней среды головного мозга и обеспечить нормальную работу таламокортикальной системы – субстрата высших психических функций человека. Отсюда ясно, почему в мозге нет единого «центра медленного сна» – это значительно уменьшило бы надежность всей системы, сделало бы ее более жестко детерминированной, полностью зависящей от «капризов» этого центра в случае каких-либо нарушений его работы.
С другой стороны, становится также понятно, почему почти невозможно длительное полное подавление медленного сна: в норме активность периодически сменяется покоем, бодрствование – медленным сном, охватывающим весь мозг целиком. Известно, что при искусственной хронической депривации механизмы бодрствования и медленного сна начинают функционировать диффузно и одновременно. При этом, разумеется, страдает нормальное поведение, зато, несмотря на депривирующее воздействие, восстанавливается мозговой гомеостаз. Однако и здесь все не так просто. Недавно Пигарев в опытах на кошках показал, что по мере развития синхронизации в ЭЭГ первичные нейроны зрительной и слуховой коры перестают реагировать на специфические стимулы и начинают все в большей степени отвечать на импульсацию, приходящую в кору со стороны внутренних органов. Принимая во внимание обнаруженные особые Ca-каналы на мембране многих корковых нейронов, которые открываются при гиперполяризации, можно предположить, что в медленном сне мозг не прекращает перерабатывать информацию, а переходит от обработки внешних сигналов к интероцептивной импульсации.
Таким образом, функция медленного сна, кажется, начинает, наконец, вырисовываться: это восстановление гомеостаза мозговой ткани и оптимизация управления внутренними органами. Для гигиены сна это означает подтверждение старого, как мир, но почему-то забытого правила: без хорошего сна не может быть хорошего бодрствования!
Совершенно по-другому обстоит дело с парадоксальным сном, который, в отличие от медленного сна, имеет ярко выраженную активную природу. Парадоксальный сон запускается из четко очерченного центра, расположенного в задней части мозга, в области варолиева моста и продолговатого мозга, а медиаторами служат ацетилхолин, глутаминовая и аспарагиновая кислоты. Во время парадоксального сна клетки мозга чрезвычайно активны, но информация от органов чувств к ним не поступает и не подается на мышечную систему. В этом и заключается парадоксальность этого состояния.
Видимо, при этом интенсивно перерабатывается информация, полученная в предшествующем бодрствовании и хранящаяся в памяти. Согласно гипотезе Жуве, в парадоксальном сне, пока непонятно как, в нейрологическую память передается наследственная, генетическая информация, имеющая отношение к организации целостного поведения. Подтверждением таких психических процессов служит появление в парадоксальном сне эмоционально окрашенных сновидений у человека, а также обнаруженный Жуве с сотрудниками и детально исследованный Э. Моррисоном с коллегами феномен демонстрации сновидений у подопытных кошек. Они выяснили, что в мозге кошек имеется особая область, ответственная за мышечный паралич во время парадоксального сна. Если ее разрушить, подопытные кошки начинают показывать свой сон: убегать от воображаемой собаки, ловить воображаемую мышь и так далее. Интересно, что «эротические» сны у кошек никогда не наблюдались, даже в брачный сезон.
Хотя в парадоксальном сне некоторые нейроны ретикулярной формации ствола и таламокортикальной системы демонстрируют своеобразный рисунок активности, различия между мозговой деятельностью в бодрствовании и парадоксальном сне довольно долго выявить не удавалось. Это было сделано лишь в 80-е годы. Оказалось, что из всех известных активирующих мозговых систем, которые включаются при пробуждении и действуют во время бодрствования, в парадоксальном сне активны лишь одна-две. Это системы, расположенные в ретикулярной формации ствола и базальных ядрах переднего мозга, использующие в качестве передатчиков ацетилхолин, глутаминовую и аспарагиновую кислоты. Все же остальные активирующие медиаторы (норадреналин, серотонин и гистамин) в парадоксальном сне не работают. Это молчание моноаминоэргических нейронов ствола мозга определяет различие между бодрствованием и парадоксальным сном, или на психическом уровне – различие между восприятием внешнего мира и сновидений. Непонятным оставалось все же, как эта активация, столь отличная от бодрствования, отражается на работе коры. Лишь в 1996–1997 гг. три независимых исследования выявили в парадоксальном сне (методом позитронной эмиссионной томографии) высокоспецифичный характер пространственного распределения активации и инактивации определенных участков коры и некоторых подкорковых ядер в мозге человека.
... клеток коры головного мозга. Таким образом, постоянная связь человека с внешним миром это главное условие его нормальной сознательной деятельности, которая является конечным результатом всех материальных процессов, происходящих в головном мозге. ПАМЯТЬ, ЕЕ ЗНАЧЕНИЕ И ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ Память — способность живых существ воспринимать, отбирать, хранить и использовать информацию для ...
... , Манассеина пришла к выводу, что сон для организма важнее пищи. В 1889 году М. Манассеина опубликовала большую книгу под названием: «Сон как треть жизни, или физиология, патология, гигиена и психология сна». Эта книга явилась настоящей энциклопедией, где впервые в популярном изложении приводились все знания того времени по проблеме сна. Книга имела огромный успех, была переведена на основные ...
... информации. Отбор информации осуществляется благодаря реакции внима- ния,рассмотренной ранее.Остановимся теперь более подробно на механизмах формирования энграммы. Важный вклад в создание современной теории памяти внес канадский физиолог Хебб.Он предположил,что внешний стимул сразу приводит к образованию лабильного следа памяти в моз- ге,который вскоре исчезает.Переход информации в долговремен- ...
... даже на нее достоверного влияния, чего нельзя сказать о производном бензодиазепина ( рис. 2). Рис.5 Доля пациентов, получавших различные дозы золпидема при лечении нарушений сна в течение года Утреннее пробуждение после приема ивадала носит характер свежести после полноценного сна. Помимо короткого периода полувыведения препарата, помимо его селективности в отношении омега-1 рецепторов, это ...
0 комментариев