1.3.1 Схема подключения термосопротивления к уравновешенному мосту
Схема подключения термосопротивления к уравновешенному мосту приведена на рис. 1.3.
Рис. 1.3. Схема измерения термосопротивления с помощью уравновешенного моста
1.3.2 Определение полного сопротивления переменного резистора R3 и цену деления шкалы (°С/Ом)
Полное сопротивление переменного резистора R3 определяем по закону Кирхгофа:
R1R3=R2R4, (1.3)
откуда
R3=R2R4/ R1, (1.4)
При 0 °С получим
R3-0°С =6000·50/ 1300=230,8 Ом.
Значения сопротивления от температуры определяем по формулам:
платиновые в диапазоне от 0 до 600 °С
(1.5)
в диапазоне от – 200 до 0 °С
(1.6)
где αT = 3,9692 × 10-3 1/°К, αВ = 5,8290 × 10-7 1/°К2 иαС = 4,3303 × 10-12 1/°К3 – температурные коэффициенты сопротивления.
Медные в диапазоне от – 50 до + 150 °С
, (1.7)
в диапазоне от – 100 до – 10 °С
, (1.8)
где αT = 4,28 × 10-3 1/°К и αВ = 5,4136 × 10-7 1/°К2.
При -50°С получим
RТ-50=50·(1+3,9692·10-3(-50)+5,8290·10-7·(-50)2+4,3303·10-12(-50-100)·(-50)3) =78,46 Ом.
R3-50°С=6000·78,46 /1300=362,215 Ом
При +150°С получим
RТ+150=50·(1+3,9692·10-3(+150)+5,8290·10-7·(+150)2) =164,20 Ом.
R3+100°С=6000·164,20/1300=757,846 Ом
Диапазон изменения сопротивлений переменного резистора
R3=362,215…757,846 Ом при изменении температуры от -50 до +150 °С.
Цена деления шкалы составит
ЦД=(150-(-50))/( 757,846-362,215)=0,5 °С/Ом.
1.3.3 Определяем погрешность измерения температуры в верхнем пределе измерений, для заданного класса допуска ТС
В нашем случае используется ТСМ 50 класса допуска В. Допускаемые отклонения сопротивлений от номинального значения ТСП при 0 °С для класса В:±0,05%.
RТ150,2=164,415 Ом,
RТ149,2=163,985 Ом.
Размах показаний прибора в верхнем пределе диапазона измерений (+200 оС) составит RТ150,2- RТ149,2=164,415-163,985=0,43 Ом. Таким образом, абсолютная погрешность измерения температуры составит ΔТ=±0,4 оС
Погрешность будет иметь как аддитивный, так и мультипликативный характер.
1.3.4 Определяем погрешность прибора, если резисторы R1 и R2 имеют допуски ± 0,5 %
Из анализа формулы (1.3) видно, что
R4 = R1×R3 /R2. (1.9)
Поэтому, при Т = 0 °С:
R4max = R1max×R3/R2min,
R4min = R1min×R3/R2max,
R4max = 6000×(1,005)× 230,8/(1300×0,995) = 10,7593 = 10,76 Ом,
R4min = 6000×(0,995)× 230,8/(1300×1,005) = 10,5463 = 10,54 Ом.
По формуле приведения
Т = Т1 + (Т2 – Т1)×(R – R1)/(R2 – R1), (1.10)
где R2 и R1 – наибольшее и наименьшее значения интервала сопротивлений, в который входит известное значение R; Т1 и Т2 – наименьшее и наибольшее значения интервала температуры в который входит искомое значение Т.
В градуировочной таблице рассчитанные по формуле (1.9) от +2 +3 °С и от -2– 3 °С), поэтому
Т = 2 + (3 – 2)×(50,50 – 50,39)/(50,585 – 50,39) = +2,564 °С.
Т = -2 + (–3 –(-2))×(49,50 – 49,661)/(49,4165 – 49,661) = – 2,571 °С.
Таким образом, погрешность измерений составит DТ = ± 2,5 °С.
1.3.5 Определяем погрешность измерения при наличии сопротивления проводов 0,5 Ом
Соединительные провода (2 шт.) подключены к термосопротивлению, поэтому при Т = 0 °С истинное сопротивление будет равно
R4 = R1×R3 /R2 – 2RП = 50 – 0,5 – 0,5 = 49 Ом.
Поэтому систематическая аддитивная погрешность составит
DТ = -5 + (-6-(-5))×(49,00 – 49,0225)/(47,328 – 49,0225) = – 5,013 °С.
1.4 Измерение температуры с помощью термосопротивления, включенного в неуравновешенный мост
неуравновешенный мост включено термосопротивление, шкала миллиамперметра имеет заданный диапазон измерений, напряжение питания моста Uab, известны также сопротивления плеч моста R2 и R3.
Требуется:
1. Изобразить принципиальную схему неуравновешенного моста.
2. Определить сопротивление R1, если Т0 = 0 °С.
3. Построить график I = f(T), в пределах диапазона измерений и определить цену деления шкалы (мА/°С).
4. Определить погрешность измерения, связанную с нелинейностью функции преобразования.
5. Определить погрешность измерений при наличии допуска на номинальное сопротивление терморезистора ± 0,1 Ом.
6. Определить погрешность измерений при падении напряжения на 0,2 В.
Решение
Исходные данные сводим в табл. 1.5.
Таблица 1.5
Исходные данные
Параметр | Обозначение | Значение |
1. Диапазон измерений | ДИ | ± 60 °С |
2. Сопротивления | R2 R3 | 280 Ом 35 Ом |
3. Тип термосопротивления | ТСП 100 | 100 Ом при 0°С |
4. Напряжение питания | Uab | 5 В |
... является увеличение производительности контроля геометрических параметров измеряемого изделия. 3.3 Характеристика объекта разработки Объект разработки представляет собой нестандартизированное средство измерения, применяемое для контроля отклонений геометрических размеров направляющих прецизионного станка. Контролируемый параметр - непараллельность. В приборе используется емкостной либо ...
... соответствии с порядком, разработанным с учетом документа Международной организации законодательной метрологии: «Первичная и последующая поверка средств измерений и измерительных процессов». При этом более строго поверка СИ определяется как совокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными органами или организациями) с целью определения и ...
... а наоборот, ее температура понижается, что предотвращает потери влаги в процессе размола и устраняет один из существенных составляющих погрешности измерения влажности. В действительности в процессе размола внутренняя энергия пробы контролируемого зерна увеличивается за счет кинетической энергии размалывающего ножа. Температура пробы контролируемого зерна повышается. Количество теплоты, полученное ...
... скорее состарится, пока посчитает 3 млн. изменений, поэтому применяют приборы, которые регистрируют каждое изменение и выдают его на соответствующих индикаторах. 2. Измерение углов. Теперь поговорим о не менее важной величине, которая называется угол. С измерением углов работники технических специальностей встречаются ничуть не реже, чем с измерением длины. Во многих случаях требуется, чтобы, ...
0 комментариев