2. Уравнение Блоха

Уравнение Блоха является основой для анализа электромагнитных процессов, возникающих при ЯМР. Оно получено из феноменологических представлений (не физических) и хорошо описывает поведение макросистемы в магнитном поле. Это уравнение имеет вид

. (3)

Член  отражает незатухающую прецессию (ротацию), где произведение пропорционально w, т.е. 1/t; векторная сумма  - поперечная намагниченность; Т1 и Т2 - постоянные времени продольной и поперечной релаксаций. Форма второго и третьего слагаемых уравнения Блоха говорит о том, что процесс релаксации предполагается экспоненциальным. Это допущение справедливо для жидкостных сред (ликворов), однако является весьма приближенным для жиров, серого и белого вещества мозга и совсем далеко от истины для твердых образований, у которых Т1 и Т2 очень малы.

Положим, что Т1 и Т2 весьма велики. Тогда вторым и третьим членами в уравнении (3) можно пренебречь. Допустим также, что Н = Н0 и Н = kН0. Тогда уравнение Блоха примет вид

 . (4)

Начальные значения составляющих М обозначим как . Представим М в виде , где i, j, k – орты, и выполним перемножение векторов согласно правилу, которое записано в виде таблицы.


Сравнивая левые и правые части в (4), находим

. (5)

Решим систему (4.5), положив . Знак "минус" здесь необходим для правильного отражения действия градиентных полей, в чем убедимся далее. Дифференцируя первое уравнение системы (5), с учетом второго получаем

 или .

Это уравнение незатухающих колебаний, решение которого с учетом начальных условий можно записать в виде

.

Полное решение системы (5) будет иметь вид

,

, (6)

.

При учете в уравнении Блоха членов, содержащих Т1 и Т2 первое и второе уравнения системы (6) следует умножить на exp(-t/T2), а третье уравнение примет вид


.

Из этой формулы видно, что продольная намагниченность является апериодической неосциллирующей функцией.

Поперечную намагниченность можно представить в компактной комплексной форме

 или , (7)

где  , .

Чтобы понять, как осуществляется управление прецессией, кратко рассмотрим устройство и действие магнитной системы МР-томографа (более подробно речь о ней пойдет впереди). Она представляет собой сложную конструкцию и состоит из главного магнита, градиентных, корректирующих и радиочастотных катушек. Главный магнит служит для создания сильного и однородного магнитного поля. Он может быть выполнен в виде соленоида с током (резистивный магнит). При больших индукциях (свыше 0,5 Тл) потери в таком магните становятся чрезмерно большими. В этом случае применяют сверхпроводящие (криогенные) магниты, охлаждаемые жидким гелием. Их стоимость очень велика, но зато диагностические возможности МР-томографов с такими магнитами намного выше. Применяют также постоянные магниты со слабым полем (0,1- 0,15 Тл).

Корректирующие катушки создают слабые постоянные магнитные поля, предназначенные для компенсации неоднородностей поля главного магнита, которая должна быть не более 10-6 .

Градиентные катушки осуществляют управление процессом выбора и сканирования сечения. При изменении тока в этих катушках очень незначительно меняется основное поле и соответственно изменяется ларморова частота в отдельных точках пространства. Градиентных катушек три: соответственно для создания градиентных полей по осям x, y и z. Особенностью градиентных полей является то, что векторы их напряженностей в любой точке направлены параллельно оси z, т.е. вдоль оси главного магнита, а их абсолютные значения линейно зависят от соответствующей координаты (рис.4).

Рисунок 4. Поля градиентов.

При действии градиентных полей результирующее поле будет равно

 или ,

где r- обобщенная координата точки. Градиенту G(r) соответствует ларморова частота

w(r) = g(H0+Gr), а величина M(t,r) будет определяться выражением, аналогичным (7):

. (8)

Если формировать статический градиент G во время наблюдения сигнала, частота колебаний намагниченности начинает зависеть от r. Эта пространственная зависимость сказывается на характере выходного сигнала. Если сформировать градиентный импульс малой длительности t (t << T1, T2), то в выражении (8) можно пренебречь величиной t/T2(r):


. (9)

Величину  в (9) можно рассматривать как изменение фазы колебания с частотой w0. Рассмотрим теперь действие ВЧ магнитного поля H1(t) при наличии поля главного магнита. Как было сказано ранее, это поле возбуждается РЧ катушками в поперечном направлении. Будем считать, что оно направлено вдоль оси х и запишем его в виде . Такое поле называют линейно поляризованным. Его можно записать в тождественной форме

+.

Это выражение представляет собой сумму полей с круговой поляризацией с разным направлением вращения. Причем, при выборе g со знаком "минус" в уравнении Лармора (w = -gН), вторая составляющая практически не влияет на прецессию ядер и ею можно пренебречь. Таким образом,

.

Это поле называется эффективным.

Пусть время действия РЧ импульса намного меньше самой малой постоянной релаксации (минимальное время Т2 тканей составляет 40 мс). Тогда уравнение Блоха будет иметь вид

,


где  +, H = H0 + h, h = Gr – вклад градиентной системы. С учетом правила перемножения векторов найдем

- ,

, (10)

.

Для упрощения решения этой системы введем вращающуюся систему координат i¢, j¢ и k¢= k, которая вращается с частотой прецессии, т.е. синхронно с вектором намагниченности. При этом одна из проекций может быть равной нулю или оказаться постоянной величиной. Преобразование проекций поясняется с помощью рис.5.

Рисунок 5. Преобразование координат

С помощью зависимостей (11), используя уравнения системы (10), можно получить уравнения для вращающейся системы координат

, (12)

.


Положим в системе (12) w = w0. Учитывая w0 = – gН0, имеем gН + w0 = g(Н0 +h) – gH0 = gh. Здесь проявляется необходимость введения знака " минус" в уравнении Лармора. Иначе бы gН + w0 » 2w0. Рассмотрим частный случай статического поля (h =0) и воздействия ВЧ поля H1(t). В этом случае система (12) примет вид

 , . (13)

Величина  имеет размерность угловой частоты. Обозначим . Тогда решениями уравнений (13) будут

 (14)

Из соотношений (14) видно, что вектор намагниченности вращается вокруг оси i’ c угловой скоростью . Это вращение относительно медленное и называется нутацией. Угол нутации равен  или , t - время действия РЧ импульса H1(t). (15)

Таким образом, угол нутации зависит от величины и времени воздействия РЧ импульса. Траектория вектора намагниченности при этом подобна раскрывающемуся вееру (рис.6).


Рисунок 6. Нутация вектора намагниченности.

Наиболее часто применяют РЧ импульсы, которые приводят к повороту вектора намагниченности на 90о и на 180о (90о - и 180о - импульсы).


Информация о работе «Физический анализ магнитно-резонансных томографов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 13498
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
84658
1
1

... плотности на фоне внутривенного введения KB 05-1. МР томография с самого начала своего клинического использования стала методом выбора в визуализации очагов демиелинизации спинного мозга. Как и при исследовании церебральной формы рассеянного склероза, Т2-взвешенные МРТ являются наиболее информативными для выявления очагов демиелинизации в спинном мозге . Т1-взвешенные томограммы полезны в ...

Скачать
36687
8
33

... и костей также прекрасно определяются при МРТ диагностике, но вот состояние полых органов (легких, кишечника, желудка и т.д.) лучше проверять при помощи компьютерной томографии. Принцип МРТ основан на резонировании атомов водорода, а полости, таким образом, аппарату практически неподвластны. Однако при использовании специальной рентгеновской пленки пространственное разрешение рентгеновских ...

Скачать
50003
1
0

... них менее миллиметра. Это обстоятельство позволяет применять многочастотный метод исследования окружающего скважину пространства подобно методу магнитной резонансной томографии (МРТ) в медицине. Возможность работы на нескольких частотах позволяет также увеличить или скорость каротажа, или точность измерения релаксационной кривой при той же скорости, или независимо реализовать несколько различных ...

Скачать
13858
0
5

... и выполняют тончайшие операции. Таких примеров использования КТ, как метод контроля за выполнением хирургических вмешательств, можно привести много. Один из них — применение мобильных компьютерных томографов (Tomoscan M, Philips) в операционных во время хирургических вмешательств, когда, например, топография структур головного мозга после вскрытия черепной коробки и вмешательства на патологическом ...

0 комментариев


Наверх