Войти на сайт

или
Регистрация

Навигация


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

Задание

I. Выбор основных размеров и обмоточных данных турбогенератора

1.1 Основные размеры и электромагнитные нагрузки

1.2 Проектирование обмотки статора

1.3 Немагнитный зазор

II. Основные размеры и обмоточные данные ротора

2.1 Основные размеры зубцово-пазовой зоны

Расчёт обмотки ротора

III.Электромагнитный расчёт турбогенератора

3.1 Расчёт характеристики холостого хода

3.2 Намагничивающая сила и ток обмотки возбуждения при номинальной нагрузке

3.3 Построение регулировочной характеристики

3.4 Параметры и постоянные времени турбогенератора

Заключение

Список использованных источников


ВВЕДЕНИЕ


Задание

Спроектировать турбогенератор серии ТВ с косвенной водородной системой охлаждения обмоток статора и ротора и с непосредственным водородным охлаждением сердечника статора.

Номинальное линейное напряжение турбогенератора UHЛ = 10500В, синхронная частота вращения п1 = 3000 об/мин; номинальная мощность РН = 30 МВт; коэффициент мощности в номинальном режиме cosн = 0,8 ; перегрузочная способность S = 1,8.


I.  Выбор основных размеров и обмоточных данных турбогенератора

 

1.1 Основные размеры и электромагнитные нагрузки

Номинальное фазное напряжение турбогенератора:

 (1.1)

Номинальный ток турбогенератора:

 (1.2)

Полная номинальная мощность:

 (1.3)

Число пар полюсов турбогенератора:

 (1.4)

Круговая частота вращения ротора турбогенератора

 (1.5)

Выбираем размер D1 – внутренний диаметр статора, имеющего косвенное водородное охлаждение рис.1.

Для этого выберем предварительное значение коэффициента kE = 1,09 и определим электромагнитную мощность турбогенератора:

 (1.6)

Принимаем значение внутреннего диаметра статора D1 = 0,9м

Теперь определим длину статора l1 для этого найдём значения коэффициентов.

Коэффициент полюсного перекрытия и коэффициент формы поля kB:

 

 (1.7)

Относительный шаг обмотки турбогенератора выбираем равным 

Которому соответствует предварительное значение обмоточного коэффициента

kоб =0,92

 

Предварительно выбираем максимальную индукцию магнитного поля B8Тл и линейную нагрузку статора А1= 11 х 104А/м в зависимости от размера D1

 

 (1.8)


При непосредственном водородном охлаждении ширину пакетов bn выбирают - 0,05 м, а ширину вентиляционных каналов bK=0,005м

Число вентиляционных каналов равно:

 (1.9)

Число пакетов статора

 (1.10)

Действительная длина статора:

 (1.11)

1.2 Проектирование обмотки статора

В проектируемом турбогенераторе применим двухслойную стержневую обмотку с числом катушечных групп на фазу равным числу полюсов, с двумя эффективными проводниками на паз un1=2, с прямоугольными пазами и лобовыми частями корзиночного типа.

Полюсное деление статора равно:

 (1.12)

Предварительное значение магнитного потока в зазоре:

 (1.13)


Число последовательно соединённых витков фазы обмотки статора:

 (1.14)

Число последовательных витков стержневой обмотки c двумя эффективными проводниками на паз un1 =2, с одинаковыми катушками должно удовлетворять равенству:

 (1.15)

Где q1 – число пазов на полюс и фазу принимаем q1=12

а1 =1 число параллельных ветвей

При этом число пазов равно:

Z1 = 2pm1q1 = 2*3*12 = 72 (1.16)

Зубцовый шаг статора при косвенном охлаждении обмотки должен находится в пределах t1 = 0,03..0,07м и равен:

 

 (1.17)

Полный пазовый ток равен:

 (1.18)

 

и находится в рекомендуемых пределах In1<=(2,5..6,5)103A расчётные

Оптимальная ширина паза определяется из соотношения (bn1/t1)опт=0,5 практически рекомендуется принимать ширину паза:

bn1 = t1 (0,35..0,45)

 

принимаем bn1 = 0,039*0,45=0,018м

Ширина зубца в узком месте:

bZ1 = t1 –bn1=0,039-0,018=0,021м (1.19)

Полученная ширина в узком месте зубца должна удовлетворять ограничению:

 (1.20)

условие выполняется

где Вz1m- индукция в коронке зуба ( 1,7 Тл);

lc1=(l-пkbk)kc=(1,81 – 32*0,005)*0.95 = 1,567м – длина чистой стали по оси статора;

kc=0,95 – коэффициент заполнения сталью пакетов статора.

Выбираем изоляцию паза по рис.3 (класс В), на котором толщина по ширине и высоте изоляции позициями обозначена так;

1)  электрокартон на дне паза - 0,1 мм;

2)  миканит гибкий под переходы – 0,4 мм;

3)  бумага асбестовая – 0,5 мм;

4)  микалента чёрная – 6 мм;

5)  лента асбестовая – 1мм ; лаковое покрытие – 0,2 мм;

разбухание изоляции от пропитки по ширине – 0,3мм; по высоте 1мм;

6)  прокладка между стержнями – 2,5мм;

7)  прокладка под клином - 1мм.

Допуски на укладку по ширине – 0,3мм, по высоте – 0,2 мм.

Общая односторонняя толщина изоляции на паз  по ширине – 4,2мм, по высоте – 10 мм.

Определим предварительную ширину проводника обмотки статора:

 (1.21)

По ширине проводника принимаем плотность тока в обмотке статора равной

j1 = 5,5 x 106 A/м2

Длина лобовой части полувитка на данном этапе проектирования:

lлоб=1,7(2Uнл / 105+ ) = 1,7(2*10500/105+0,83*1,413) = 2,35м (1.22)

 

Длина витка обмотки статора:

 (1.23)

Определим предварительное сечение эффективного проводника обмотки статора:

 (1.24)

Высоту элементарного проводника выбираем стандартной ам1 = 3мм, bм1=5мм, расчётное сечение Sc = 14,45 мм2

Число элементарных проводников в одном эффективном равно:


пэл =S1 / Sc = 375 / 14,45 = 26 (1.25)

 

Из рис.4. определяем окончательные размеры: bn1 =20мм , hn1 = 149мм.

Высота клина равна ширине паза nк = 0.98bn1 = 15мм

 

hn1 / bn1 = 149/20=7,45 – удовлетворяет требованию (6..8,5)

h11 = 110 мм; h4 = 30мм

 

Определим высоту спинки статора:

 (1.26)

 

где Ba1=1,6 Тл – желаемая максимальная индукция магнитного поля в ярме статора.

Внешний диаметр пакета статора:

 

Da = D1+2(hn1+ha1) = 0,9+2(0,149+0,259) =1,72 м. (1.27)

 


Информация о работе «Расчёт турбогенератора»
Раздел: Физика
Количество знаков с пробелами: 14138
Количество таблиц: 1
Количество изображений: 4

Похожие работы

Скачать
32290
8
23

... , мощности генератора, системы возбуждения и постоянной времени возбуждения. Расчетные кривые используются для турбогенераторов мощностью до 300 МВТ c АРВ. На рис.5.7 и 5.8 приведены расчетные кривые токов короткого замыкания турбогенераторов средней мощности до 100 МВТ [1]. и 200 – 300 МВТ [8] соответственно. Типовые кривые используются для турбогенераторов мощностью до 1200 МВТ с системами ...

Скачать
33327
17
1

... Расчет токов короткого замыкания. При расчётах используются величины токов короткого замыкания, полученные при расчётах для энергосистемы в целом, для её минимального и максимального режима. Расчёт был произведён ЦС РЗАИ ООО "Архэнерго". Полученные результаты сведены в таблицу . Таблица Токи КЗ в ветвях и точках 110 кВ Точка, ветвь S 3I0 на шинах и 3I0  в ветвях (однофазного ...

Скачать
148536
48
16

... секцию; заменить поверхностный пароохладитель на впрыскивающий с подачей питательной воды, рассмотреть вопросы по установке турбогенераторов, расчету трубопроводов, изменению схемы электронсабжения. 2. Реконструкция котла-утилизатора КСТ-80 с целью установки конденсационной турбины   2.1. Краткое описание мероприятий предлагаемых в дипломном проекте   В данном дипломном проекте предлагаются ...

Скачать
170237
21
17

... и их результаты рассматриваются в этом разделе. Также в нём приведены расчёт и описание установки на которой производились исследования по повышению температуры сетевой воды в пиковых бойлерах до температуры 140 - 145С, путём изменения водно-химического режима, проведены испытания по нахождению оптимального соотношения между комплексонами ИОМС и СК - 110; результаты расчетного эксперимента, на ...

0 комментариев


Наверх